Document Type : Final File


1 1 Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Islamic Republic of Iran

2 2 Faculty of Geosciences, Shahrood University of Technology, Shahrood, Shahrood, Islamic Republic of Iran

3 Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran


In this research, petrographic and geochemical (major and trace elements) characteristics of siliciclastic rocks of the Mozduran Formation in the eastern Kopet-Dagh Basin have been carried out in order to reveal their provenance such as source area paleoweathering, parent rock composition and tectonic setting. Mozduran Formation is mainly composed of limestone and dolomite, with minor amounts of siliciclastic rocks and evaporites. Siliciclastics rocks (sandstone and shale) of Mozduran Formation are mainly present in the easternmost parts of the Kopet-Dagh Basin. Four stratigraphic sections of Mozduran Formation, namely Kole-Malekabad, Kale-Karab, Deraz-Ab and Karizak, were measured and sampled in the SE of the basin. Petrographic investigation showed that the sandstones are mostly classifies as litharenite and feldspathic litharenite. Geochemical data revealed that CIA values of Mozduran siliciclastic rocks confirm a medium weathering that can be due to semi-arid climatic condition in the source area. Felsic composition of parent rocks and quatzolithic petrofacies of Mozduran Formation sandstones and their constituents such as Qp, Qm, Ls, Lm and F, together with paleocurrent analysis show that these siliciclastic sediments may have derived from uplifted and trusted belt of sedimentary or sedimentary- metamorphic rocks of south Mashhad and metamorphic rocks of north Fariman region. Petrographic and geochemical analyses suggest that these sediments deposited in a continental rifting system.   


Main Subjects

  1. Afshar-Harb A. The stratigraphy, tectonics and petroleum geology of the Kopet Dagh region, northern Iran. Ph.D thesis, Imperial College of Science and Technology, London, 316p (1979).
  2. Kavoosi M., Lasemi Y., Sherkati S., and Moussavi-Harami S. R. Facies analysis and depositional sequences of the Upper Jurassic Mozduran Formation, a reservoir in the Kopet Dagh Basin, NE Iran. J. Petrol. Geol., 32: 235–260 (2009).
  3. Adabi M.H. Multistage dolomitization of Upper Jurassic Mozduran Formation, Kopeh-Dagh Basin, N.E. Iran. Carbonates Evaporites, 24: 16–32 (2009).
  4. Mahboubi A., Moussavi-Harami S. R., Aghaei A., Carpenter S. J., and Collins L. Petrographical and geochemical evidences for paragenetic sequence interpretation of diagenesis in mixed siliciclastic–carbonate sediments: Mozduran Formation (Upper Jurassic), south of Agh-Darband, NE Iran. Carbonates Evaporates, 25: 231–246 (2010).
  5. Kavoosi M. Inorganic control on original carbonate mineralogy and creation of gas reservoir of the Upper Jurassic carbonates in the Kopet-Dagh Basin, NE, Iran. Carbonates Evaporites, 29: 419–432 (2014).
  6. Zand-Moghadam H., Moussavi Harami S. R., Mahboubi A., and Aghaei A. Lithofacies and sequence stratigraphic analysis of the Upper Jurassic siliciclastics in the eastern Kopet-Dagh Basin, NE Iran. J. Afr. Earth Sci., 117: 48–61 (2016).
  7. Metcalf K., and Kapp P. The Yarlung suture mélange, Lopu Range, southern Tibet: Provenance of sandstone blocks and transition from oceanic subduction to continental collision. Gondwana Res., 48:  15-33 (2017).
  8. Basu A., Bickford M.E., and Deasy R. Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: A dissent. Sediment. Geol.336: 26-35 (2016).
  9. Purevjav N., and Roser B. Geochemistry of Silurian–Carboniferous sedimentary rocks of the Ulaanbaatar terrane, Hangay–Hentey belt, central Mongolia:Provenance, paleoweathering, tectonic setting, and relationship with the neighbouring Tsetserleg terrane. Chem. Erde., 73: 481–493 (2013).

10. Robert A.M.M., Letouzey J., Kavoosi M.A., Sherkati S., Muller C., Verg_ees J., and Aghababae A. Structural evolution of the Kopet Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Mar. Petrol. Geol., 57: 68-87 (2014).

11. Shafaii Moghadam H., Li X.H., Ling X.X., Stern R.J., Khedr M.Z., Chiaradia M., Ghorbani Gh., Arai Sh., and Tamura A. Devonian to Permian evolution of the Paleo-Tethys Ocean: New evidence from U-Pb zircon dating and Sr-Nd-Pb isotopes of the Darrehanjir- Mashhad “ophiolites”, NE Iran. Gondwana Res., 28 (2): 781-799 (2015).

12. Shafaii Moghadam H., and Stern R.J. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: I) Paleozoic ophiolites. J. Asian Earth Sci., 100: 31-59 (2015).

13. Taheri J., Fürsich F., and Wilmsen M. Stratigraphy, depositional environments and geodynamic significance of the Upper Bajocian Bathonian Kashafrud Formation, NE Iran. in: Brunet M. F., Wilmsen M., Granath J.W. (Eds.), South Caspian to Central Iran Basins. Geol. Soc. London., Spec. Public., 312: pp. 205–218 (2009).

14. Sardar Abadi M., Da Silva A.C., Amini A., Boulvain F., and Sardar Abadi M.H. Tectonically controlled sedimentation: impact on sediment supply and basin evolution of the Kashafrud Formation (Middle Jurassic, Kopeh-Dagh Basin, northeast Iran. Int. J. Earth Sci., 103: 2233–2254 (2014).

15. Folk R.L. Petrology of Sedimentary Rocks. Hemphill Publication Company, Austin, 182 p (1980).

16. Harker A. The natural history of igneous rocks, Macmillan, New York, 384p (1909).

17. Herron M.M. Geochemical classification of terrigenous sands and shales from core or log data. J. Sedimet. Petrol., 58: 820–829 (1988).

18. Nesbitt H.W., and Young G.M., 1982. Early Proterozoic climate and plate motions inferred from major elements chemistry of lutites. Nature, 299: 715–717 (1982).

19. Shao J., Yang Sh., and Li Ch.  Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sediment. Geol.265–266: 110-120 (2012).

20. Garzanti E., and Resentini A. Provenance control on chemical indices of weathering (Taiwan river sands). Sediment. Geol., 336: 81-95 (2016).

21. Fedo C.M., Nesbitt H.W., and Young G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23: 921–924 (1995).

22. Perri F. Composition, provenance and source weathering of Mesozoic sandstones from Western-Central Mediterranean Alpine Chains. J. Afr. Earth Sci.,  91, 32-43 (2014).

23. Armstrong-Altrin J.S., and Machain-Castillo M. L. Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. J. S. Am. Earth Sci., 71: 182-200, (2016).

24. Ohta T. Measuring and adjusting the weathering and hydraulic sorting effect for rigorous provenance analysis of sedimentary rocks: a case study from the Jurassic Ashikita Group, south-west Japan. Sedimentology, 55: 1687-1701 (2008).

25. Zaid S. M. Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. J. Afr. Earth Sci., 66–67: 56–71 (2012).

26. Pantopoulos G., and Zelilidis A. Petrographic and geochemical characteristics of Paleogene turbidite deposits in the southern Aegean (Karpathos Island, SE Greece): Implications for provenance and tectonic setting. Chem. Erde., 72: 153–166 (2012).

27. Zand-Moghadam H., Moussavi-Harami R., Mahboubi A., and Rahimi B.Petrography and geochemistry of the Early-Middle Devonian sandstones of the Padeha Formation the north of Kerman, SE Iran: Implication for provenance. Boletín del Instituto de Fisiografía y Geología, 83: 1-14 (2013).

28. Jafarzadeh M., Moussavi-Harami S. R., Amini A., Mahboubi A., and Farzaneh F. Geochemical constraints on the provenance of Oligocene–Miocene siliciclastic deposits (Zivah Formation) of NW Iran: implications for the tectonic evolution of the Caucasus. Arab. J. Geosci., 7: 4245-4263 (2014).

29. Castillo P., Lacassie J. P., Augustsson C., and Hervé F. Petrography and geochemistry of the Carboniferous-Triassic Trinity Peninsula Group, West Antarctica: Implications for provenance and tectonic setting. Geol. Mag., 152: 575–588 (2015).

30. Hu J., Li Q., Fang N., and Yang J, Ge D. Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting. Arab. J. Geosci., 8:5373–5388, (2015).

31. Girty G.H., Ridge D.L., Knaack C., Johnson D., and Al-Riyami R.K. Provenance and depositional setting of Paleozoic Chert and Argillite, Sierra Nevada, California. J. Sediment. Res., 66: 107–118 (1996).

32. Floyd P.A., Winchester J.A., and Park R.G. Geochemistry and tectonic setting of Lewisianclastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, N.W. Scotland. Precambrian Res., 45: 203–214 (1989).

33. Armstrong-Altrin J.S., Lee Y.I., Kasper-Zubillaga J.J., Carranza-Edwards A., Garcia D., Eby, N., Balaram V., and Cruz-Ortiz N.L. Geochemistry of beach sands along the western Gulf of Mexico, Mexico: implication for provenance. Chem. Erde., 72: 345–362 (2012).



Garver J.I., Royce P.R., and Smick T.A. Chromium and nickel in shale of the Taconic Foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J. Sediment. Res., 66: 100–106 (1996).

35. Dickinson W.R., Beard L.S., Brakenridge G.R., Evjavec J.L., Ferguson R.C., Inman K.F., Knepp R.A., Lindberg F.A., and Ryberg P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull., 94: 222–235 (1983).

36. Roser B.P., and Korsch R.J. Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol., 67: 119–139 (1988).

37. Bhatia M. R. Plate tectonics and geochemical composition of sandstones. J. Geol., 91: 611–627 (1983).

38. Kroonenberg S.B. Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. in: Proceedings of the 29th International Geological Congress, Part A, Kyoto, Japan 1992, Kumon F. and Yu K.M.  (Eds.), V.S.P. Public., Utrecht., pp. 69–81 (1994).

39. Verma S.P., and Armstrong-Altrin J.S. New multi-dimensional diagrams for tectonic discrimination of silica clastic sediments and their application to Pre-Cambrian basins. Chem. Geol., 355: 117-180 (2013).

40. Stampfli G.M., and Borel G.D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett., 196: 17–33 (2002).

41. Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monié P., Meyer B., and Wortel R. Zagros orogeny: a subduction-dominated process. Geol. Mag., 148 (5-6): 692-725 (2011).

42. Zanchetta S., Berra F., Zanchi A., Bergomi M., Caridroit,M., Nicorab A., and Heidarzadeh G. The record of the Late Palaeozoic active margin of the Palaeotethys in NE Iran: constraints on the Cimmerian orogeny. Gondwana Res., 24 (3-4): 1237-1266 (2013).

43. Wilmsen M., Fürsich T., Emami K.S., Majidifard M.R., and Taheri M.R. The Cimmerian Orogeny in northern Iran: tectono-stratigraphic evidence from the foreland. Terra Nova, 21 (3): 211-218 (2009).

44. Adabi M.H., and Rao C.P. Petrographic and geochemical evidence for original aragonite mineralogy of Upper Jurassic Carbonates (Mozduran Formation), Sarakhs area, Iran. Sediment. Geol., 72: 253–267 (1991).