1. Ward D. The Biology of Deserts. Oxford University Press, Oxford (2016).
2. Clark I. Groundwater Geochemistry and Isotopes. CRC press, New York (2015).
3.Appelo C.A.J. and Postma D. Geochemistry, Groundwater and Pollution. CRC press, Amsterdam (2005).
4.Modarres R. and Da Silva V.P.R. Rainfall trends in arid and semi-arid regions of Iran. J. Arid .Environ. 70: 344–355 (2007).
5.Mahdavi A.E., Aghanabati A., Sohieli M., Mohajel M., Huckriede R. and Haj Mola Ali, A. Geological quadrangle map of Ravar (scale 1:250000). Geological survey of Iran, Tehran (1996).
6.Stocklin J. Lagoonal formations and salt domes in East Iran. Bull. Iran. Pertrol. Instit. 3: 29–46 (1961).
7.APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington: American Water Works Association, Water Environment Federation. p.541 (2005).
8.Chadha D.K. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol. J. 7: 431–439 (1999).
9.Hassen I., Hamzaoui-Azaza F. and Bouhlila R. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia. Environ. Monit. Assess.188:135-146 (2016).
10. Huang G., Chen Z. and Sun J. Water quality assessment and hydrochemical characteristics of shallow groundwater in eastern Chancheng district, Foshan, China. Water. Environ. Res. 2: 354–362 (2013).
11. Gibbs R.J. Mechanisms controlling world’s water chemistry. Science 170: 1088–1090 (1970).
12. Wang X., Zhou X., Zhao J., Zheng Y., Song C., Long M. and Chen T. Hydrochemical evolution and reaction simulation of travertine deposition of the Lianchangping hot springs in Yunnan, China. Quatern. Int. 18: 1–14 (2016).
13. Pasvanoglu, S. Hydrogeochemistry of thermal and mineralized waters in the Diyadin (Agri) area, Eastern Turkey. Appl. Geochem. 38: 70–81(2014).
14. Hounslow A.W. Water quality data: analysis and interpretation. CRC Lewis Publishers, Florida (1995).
15. Pratheepa V., Ramesh S., Sukumaran, N. and Murugesan, A.G. Identification of the sources for groundwater salinization in the coastal aquifers of Southern Tamil Nadu, India. Environ.Earth.Sci. 4: 2819–2829 (2015).
16. Jankowski J. and Acworth R.I. Impact of debris-flow deposits on hydrogeochemical processes and the development of dryland salinity in the Yass River catchment, New South Wales, Australia. Hydrogeol. J. 5: 71–88 (1997).
17. Ledesma-Ruiza R., Pastén-Zapataa E., Parraa, R., Harterb, T. and Mahlknecht J. Investigation of the geochemical evolution of groundwater under agricultural land: A case study in northeastern Mexico. J. Hydrol. 521: 410–423 (2015).
18. Schoeller H. Les eaux souterraines Massio et Cie, Paris, France (1962).
19. Alcalá F.J. and Custodio E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydro. 359: 189–207 (2008).
20. Parkhurst D.L. and Appelo C.A.J. User's guide to PHREEQC – A computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations: Technical Report 99-4259. US Geological Survey, Denver, Colorado (1999).
21. Selvakumar S., Ramkumar K., Chandrasekar N., Magesh N.S. and Kaliraj K. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Appl.Water. Sci. doi: 10.1007/s13201-014-0256-9 (2014).
22. Kavab Engineering Consultants. A report on prohibition of water abstraction within Ravar plain. p.160 (2010).
23. Karimzadeh A., Aminizadeh Bazanjani M.R. Scrutiny of Feasibility of Implementation for Underground Dam in the Margin of Desert for Land Farming (Case Study, Kerman (Ravar) Underground Dam). IJABBR. 1: 1129-1141 (2013).