Document Type : Final File

Authors

Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran

Abstract

The present study examined the effect of three methods of preparation on the properties and catalytic performance of Cu-Mn/SiO2 catalysts for the water gas shift reaction (WGSR). Impregnation and coprecipitation and the new approach of thermal decomposition of [Cu(H2O)6][Mn(dipic)2].2H2O/SiO2 inorganic precursor complex were used for the synthesis of the silica-supported copper-manganese mixed oxide catalysts. The calcined catalysts and the precursors used for their preparation were characterized by XRD, SEM, BET, TGA, DSC, and FTIR spectroscopy. The WGSR was assessed at 180 to 320 °C. The results showed that thermal decomposition of inorganic precursor complex is more convenient than impregnation and coprecipitation for preparing active and stable Cu-Mn/SiO2 catalysts for the WGSR.

Keywords

1. Ratnasamy C. and Wagner J.P. Water gas shift catalysis. Catal. Rev. 51: 325-440 (2009).
2. Tanaka Y., Takeguchi T., Kikuchi R. and Eguchi K. Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Appl. Catal. A. 279: 59-66 (2005).
3. Tanaka Y., Utaka T., Kikuchi R., Takeguchi T., Sasaki K. and Eguchi K. Water Gas Shift Reaction for the Reformed Fuels over Cu/MnO Catalyst Prepared via Spinel-Type Oxide. J. Catal. 215: 271–278 (2003).
4. Tanaka Y., Utaka T., Kikuchi R., Sasaki K. and Eguchi K. Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels. Appl. Catal. A. 242: 287-295 (2003).
5. Hutchings G.J., Copperthwaite R.G., Gottschalk F.M., Hunter R., Mellor J., Orchard S.W. and Sangiorgio T. A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide and copper manganese oxide as catalysts for the water-gas shift reaction. J. Catal. 137: 408–422 (1992).
6. Ke-duan Z., Quan-sheng L., Ya-gang Z., Shuang H. and Run-xia H. Effect of precipitator on the texture and activity of copper-manganese mixed oxide catalysts for the water gas shift reaction. J. Fuel Chem. Technol. 38: 445−451 (2010).
7. Papavasiliou J., Avgouropoulos G. and Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl. Catal. B. 88: 490-496 (2009).
8. Farzanfar J. and Rezvani A.R. Study of a Mn–Cr/TiO2 mixed oxide nanocatalyst prepared via an inorganic precursor complex for high-temperature water–gas shift reaction. C. R. Chimie. 18: 178-186 (2015).
9. Farzanfar J. and Rezvani A.R. Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni–Co nanocatalysts. Res. Chem. Intermed. 41: 8975-9001 (2015).
10. Huang Q., Yan X., Li B., Xu X., Chen Y., Zhu S. and Shen S. Activity and stability of Pd/MMnOx (M = Co, Ni, Fe and Cu) supported on cordierite as CO oxidation catalysts. J. IND. ENG. CHEM. 19: 438–443 (2013).
11. Yan X., Huang Q., Li B., Xu X., Chen Y., Zhu S. and Shen S. Catalytic performance of LaCo0.5M0.5O3 (M = Mn, Cr, Fe, Ni, Cu) perovskite-type oxides and LaCo0.5Mn0.5O3 supported on cordierite for CO oxidation. J. IND. ENG. CHEM. 19: 561–565 (2013).
12. Mansouri M., Atashi H., Tabrizi F.F., Mirzaei A.A. and Mansouri G. Kinetics studies of nano-structured cobalt–manganese oxide catalysts in Fischer–Tropsch synthesis. J. IND. ENG. CHEM. 19: 1177–1183 (2013).
13. Ma X., Sun H., Sun Q., Feng X., Guo H., Fan B., Zhao S., He X. and Lv L. Catalytic oxidation of CO and o-DCB over CuO/CeO2 catalysts supported on hierarchically porous silica. Catal. Commun.12: 426–430 (2011).
14. Tabatabaee M., Kukovec B.M. and Kazeroonizadeh M. A unique example of a co-crystal of [Ag(atr)2][Cr(dipic)2] (dipic = dipicolinate; atr = 3-amino-1H-1,2,4-triazole) and dinuclear [Cr(H2O)(dipic)(µ-OH)]2, with different coordination environment of Cr(III) ions. Polyhedron 30: 1114-1119 (2011).
15. Saravani H., Ghahfarokhi M.T. and Esmaeilzaei M.R. Synthesis and Characterization of Superparamagnetic NiBaO2 Nano-Oxide Using Novel Precursor Complex [Ba(H2O)8][Ni(dipic)2]. J. Inorg. Organomet. Polym. 26: 660-666 (2016).
16. Tabatabaee M., Tahriri M., Tahriri M., Ozawa Y., Neumuller B., Fujioka H. and Toriumi K. Preparation, crystal structures, spectroscopic and thermal analyses of two co-crystals of [M(H2O)6][M(dipic)2] and (atrH)2[M(dipic)2] (M = Zn, Ni, dipic = dipicolinate; atr = 3-amino-1H-1,2,4-triazole) with isostructural crystal systems. Polyhedron 33: 336-340 (2012).
17. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, New York, (1997).
18. Shakirova O.G., Lavrenova L.G., Korotaev E.V., Kuratieva N.V., Kolokolov F.A. and Burdukov A.B. Structure and spin crossover in an iron (II) compound with tris(pyrazol-1-yl)methane and the complex Eu(dipic)2(Hdipic)]2– anion. J. Struct. Chem. 57: 471-477 (2016).
19. Siddiqi Z.A., Khalid M., Shahid M., Kumar S., Sharma P.K., Siddique A. and Anjuli. H-bonded supramolecular assembly via proton transfer: Isolation, X-ray crystallographic characterization and SOD mimic activity of [Cu(dipic)2]2[PA-H]4.5H2O. J. Mol. Struct. 1033: 98-103 (2013).
20. Kirillova M.V., Kirillov A.M., DaSilva M.F.C.G., Kopylovich M.N., DaSilva J.J.R.F. and Pombeiro A.J.L. 3D Hydrogen Bonded Metal-Organic Frameworks Constructed from [M(H2O)6][M'(dipicolinate)2].mH2O (M/M' = Zn/Ni or Ni/Ni). Identification of Intercalated Acyclic (H2O)6/(H2O)10 Clusters. Inorg. Chim. Acta 361: 1728-1737 (2008).
21. Devereux M., McCann M., Leon V., McKee V. and Ball R.J. Synthesis and catalytic activity of manganese(II) complexes of heterocyclic carboxylic acids: X-ray crystal structures of [Mn(pyr)2]n, [Mn(dipic)(bipy)2]·4.5H2O and [Mn(chedam)(bipy)]·H2O (pyr=2-pyrazinecarboxylic acid; dipic=pyridine-2,6-dicarboxylic acid; chedam=chelidamic acid(4-hydroxypyridine-2,6-dicarboxylic acid); bipy=2,2-bipyridine). Polyhedron 21: 1063-1071 (2002).
22. Kanthimathi M., Dhathathreyan A. and Nair B.V. Nanosized nickel oxide using bovine serum albumin as template. Mater. Lett. 58: 2914–2917 (2004).
23. Morales M.R., Barbero B.P. and Cadús L.E. Evaluation and characterization of Mn – Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content. Fuel 87: 1177-1186 (2008).
24. Yesilel O.Z., Ilker I., Refat M.S. and Ishida H. Syntheses and characterization of two copper pyridine-dicarboxylate compounds containing water clusters. Polyhedron 29: 2345-2351 (2010).
25. Li P., Liu J., Nag N. and Crozier P.A. In situ preparation of Ni-Cu/TiO2 bimetallic catalysts. J. Catal. 262: 73-82 (2009).
26. Chen W., Lin M., Jiang T.L. and Chen M. Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. Int. J. Hydrogen Energy 33: 6644-6656 (2008).
 
 
1. Ratnasamy C. and Wagner J.P. Water gas shift catalysis. Catal. Rev. 51: 325-440 (2009).
2. Tanaka Y., Takeguchi T., Kikuchi R. and Eguchi K. Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Appl. Catal. A. 279: 59-66 (2005).
3. Tanaka Y., Utaka T., Kikuchi R., Takeguchi T., Sasaki K. and Eguchi K. Water Gas Shift Reaction for the Reformed Fuels over Cu/MnO Catalyst Prepared via Spinel-Type Oxide. J. Catal. 215: 271–278 (2003).
4. Tanaka Y., Utaka T., Kikuchi R., Sasaki K. and Eguchi K. Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels. Appl. Catal. A. 242: 287-295 (2003).
5. Hutchings G.J., Copperthwaite R.G., Gottschalk F.M., Hunter R., Mellor J., Orchard S.W. and Sangiorgio T. A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide and copper manganese oxide as catalysts for the water-gas shift reaction. J. Catal. 137: 408–422 (1992).
6. Ke-duan Z., Quan-sheng L., Ya-gang Z., Shuang H. and Run-xia H. Effect of precipitator on the texture and activity of copper-manganese mixed oxide catalysts for the water gas shift reaction. J. Fuel Chem. Technol. 38: 445−451 (2010).
7. Papavasiliou J., Avgouropoulos G. and Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl. Catal. B. 88: 490-496 (2009).
8. Farzanfar J. and Rezvani A.R. Study of a Mn–Cr/TiO2 mixed oxide nanocatalyst prepared via an inorganic precursor complex for high-temperature water–gas shift reaction. C. R. Chimie. 18: 178-186 (2015).
9. Farzanfar J. and Rezvani A.R. Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni–Co nanocatalysts. Res. Chem. Intermed. 41: 8975-9001 (2015).
10. Huang Q., Yan X., Li B., Xu X., Chen Y., Zhu S. and Shen S. Activity and stability of Pd/MMnOx (M = Co, Ni, Fe and Cu) supported on cordierite as CO oxidation catalysts. J. IND. ENG. CHEM. 19: 438–443 (2013).
11. Yan X., Huang Q., Li B., Xu X., Chen Y., Zhu S. and Shen S. Catalytic performance of LaCo0.5M0.5O3 (M = Mn, Cr, Fe, Ni, Cu) perovskite-type oxides and LaCo0.5Mn0.5O3 supported on cordierite for CO oxidation. J. IND. ENG. CHEM. 19: 561–565 (2013).
12. Mansouri M., Atashi H., Tabrizi F.F., Mirzaei A.A. and Mansouri G. Kinetics studies of nano-structured cobalt–manganese oxide catalysts in Fischer–Tropsch synthesis. J. IND. ENG. CHEM. 19: 1177–1183 (2013).
13. Ma X., Sun H., Sun Q., Feng X., Guo H., Fan B., Zhao S., He X. and Lv L. Catalytic oxidation of CO and o-DCB over CuO/CeO2 catalysts supported on hierarchically porous silica. Catal. Commun.12: 426–430 (2011).
14. Tabatabaee M., Kukovec B.M. and Kazeroonizadeh M. A unique example of a co-crystal of [Ag(atr)2][Cr(dipic)2] (dipic = dipicolinate; atr = 3-amino-1H-1,2,4-triazole) and dinuclear [Cr(H2O)(dipic)(µ-OH)]2, with different coordination environment of Cr(III) ions. Polyhedron 30: 1114-1119 (2011).
15. Saravani H., Ghahfarokhi M.T. and Esmaeilzaei M.R. Synthesis and Characterization of Superparamagnetic NiBaO2 Nano-Oxide Using Novel Precursor Complex [Ba(H2O)8][Ni(dipic)2]. J. Inorg. Organomet. Polym. 26: 660-666 (2016).
16. Tabatabaee M., Tahriri M., Tahriri M., Ozawa Y., Neumuller B., Fujioka H. and Toriumi K. Preparation, crystal structures, spectroscopic and thermal analyses of two co-crystals of [M(H2O)6][M(dipic)2] and (atrH)2[M(dipic)2] (M = Zn, Ni, dipic = dipicolinate; atr = 3-amino-1H-1,2,4-triazole) with isostructural crystal systems. Polyhedron 33: 336-340 (2012).
17. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, New York, (1997).
18. Shakirova O.G., Lavrenova L.G., Korotaev E.V., Kuratieva N.V., Kolokolov F.A. and Burdukov A.B. Structure and spin crossover in an iron (II) compound with tris(pyrazol-1-yl)methane and the complex Eu(dipic)2(Hdipic)]2– anion. J. Struct. Chem. 57: 471-477 (2016).
19. Siddiqi Z.A., Khalid M., Shahid M., Kumar S., Sharma P.K., Siddique A. and Anjuli. H-bonded supramolecular assembly via proton transfer: Isolation, X-ray crystallographic characterization and SOD mimic activity of [Cu(dipic)2]2[PA-H]4.5H2O. J. Mol. Struct. 1033: 98-103 (2013).
20. Kirillova M.V., Kirillov A.M., DaSilva M.F.C.G., Kopylovich M.N., DaSilva J.J.R.F. and Pombeiro A.J.L. 3D Hydrogen Bonded Metal-Organic Frameworks Constructed from [M(H2O)6][M'(dipicolinate)2].mH2O (M/M' = Zn/Ni or Ni/Ni). Identification of Intercalated Acyclic (H2O)6/(H2O)10 Clusters. Inorg. Chim. Acta 361: 1728-1737 (2008).
21. Devereux M., McCann M., Leon V., McKee V. and Ball R.J. Synthesis and catalytic activity of manganese(II) complexes of heterocyclic carboxylic acids: X-ray crystal structures of [Mn(pyr)2]n, [Mn(dipic)(bipy)2]·4.5H2O and [Mn(chedam)(bipy)]·H2O (pyr=2-pyrazinecarboxylic acid; dipic=pyridine-2,6-dicarboxylic acid; chedam=chelidamic acid(4-hydroxypyridine-2,6-dicarboxylic acid); bipy=2,2-bipyridine). Polyhedron 21: 1063-1071 (2002).
22. Kanthimathi M., Dhathathreyan A. and Nair B.V. Nanosized nickel oxide using bovine serum albumin as template. Mater. Lett. 58: 2914–2917 (2004).
23. Morales M.R., Barbero B.P. and Cadús L.E. Evaluation and characterization of Mn – Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content. Fuel 87: 1177-1186 (2008).
24. Yesilel O.Z., Ilker I., Refat M.S. and Ishida H. Syntheses and characterization of two copper pyridine-dicarboxylate compounds containing water clusters. Polyhedron 29: 2345-2351 (2010).
25. Li P., Liu J., Nag N. and Crozier P.A. In situ preparation of Ni-Cu/TiO2 bimetallic catalysts. J. Catal. 262: 73-82 (2009).
26. Chen W., Lin M., Jiang T.L. and Chen M. Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. Int. J. Hydrogen Energy 33: 6644-6656 (2008).