1. Ratnasamy C. and Wagner J.P. Water gas shift catalysis. Catal. Rev. 51: 325-440 (2009).
2. Tanaka Y., Takeguchi T., Kikuchi R. and Eguchi K. Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Appl. Catal. A. 279: 59-66 (2005).
3. Tanaka Y., Utaka T., Kikuchi R., Takeguchi T., Sasaki K. and Eguchi K. Water Gas Shift Reaction for the Reformed Fuels over Cu/MnO Catalyst Prepared via Spinel-Type Oxide. J. Catal. 215: 271–278 (2003).
5. Hutchings G.J., Copperthwaite R.G., Gottschalk F.M., Hunter R., Mellor J., Orchard S.W. and Sangiorgio T. A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide and copper manganese oxide as catalysts for the water-gas shift reaction. J. Catal. 137: 408–422 (1992).
6. Ke-duan Z., Quan-sheng L., Ya-gang Z., Shuang H. and Run-xia H. Effect of precipitator on the texture and activity of copper-manganese mixed oxide catalysts for the water gas shift reaction. J. Fuel Chem. Technol. 38: 445−451 (2010).
7. Papavasiliou J., Avgouropoulos G. and Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl. Catal. B. 88: 490-496 (2009).
8. Farzanfar J. and Rezvani A.R. Study of a Mn–Cr/TiO2 mixed oxide nanocatalyst prepared via an inorganic precursor complex for high-temperature water–gas shift reaction. C. R. Chimie. 18: 178-186 (2015).
9. Farzanfar J. and Rezvani A.R. Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni–Co nanocatalysts. Res. Chem. Intermed. 41: 8975-9001 (2015).
10. Huang Q., Yan X., Li B., Xu X., Chen Y., Zhu S. and Shen S. Activity and stability of Pd/MMnOx (M = Co, Ni, Fe and Cu) supported on cordierite as CO oxidation catalysts. J. IND. ENG. CHEM. 19: 438–443 (2013).
11. Yan X., Huang Q., Li B., Xu X., Chen Y., Zhu S. and Shen S. Catalytic performance of LaCo0.5M0.5O3 (M = Mn, Cr, Fe, Ni, Cu) perovskite-type oxides and LaCo0.5Mn0.5O3 supported on cordierite for CO oxidation. J. IND. ENG. CHEM. 19: 561–565 (2013).
12. Mansouri M., Atashi H., Tabrizi F.F., Mirzaei A.A. and Mansouri G. Kinetics studies of nano-structured cobalt–manganese oxide catalysts in Fischer–Tropsch synthesis. J. IND. ENG. CHEM. 19: 1177–1183 (2013).
13. Ma X., Sun H., Sun Q., Feng X., Guo H., Fan B., Zhao S., He X. and Lv L. Catalytic oxidation of CO and o-DCB over CuO/CeO2 catalysts supported on hierarchically porous silica. Catal. Commun.12: 426–430 (2011).
14. Tabatabaee M., Kukovec B.M. and Kazeroonizadeh M. A unique example of a co-crystal of [Ag(atr)2][Cr(dipic)2] (dipic = dipicolinate; atr = 3-amino-1H-1,2,4-triazole) and dinuclear [Cr(H2O)(dipic)(µ-OH)]2, with different coordination environment of Cr(III) ions. Polyhedron 30: 1114-1119 (2011).
15. Saravani H., Ghahfarokhi M.T. and Esmaeilzaei M.R. Synthesis and Characterization of Superparamagnetic NiBaO2 Nano-Oxide Using Novel Precursor Complex [Ba(H2O)8][Ni(dipic)2]. J. Inorg. Organomet. Polym. 26: 660-666 (2016).
16. Tabatabaee M., Tahriri M., Tahriri M., Ozawa Y., Neumuller B., Fujioka H. and Toriumi K. Preparation, crystal structures, spectroscopic and thermal analyses of two co-crystals of [M(H2O)6][M(dipic)2] and (atrH)2[M(dipic)2] (M = Zn, Ni, dipic = dipicolinate; atr = 3-amino-1H-1,2,4-triazole) with isostructural crystal systems. Polyhedron 33: 336-340 (2012).
17. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, New York, (1997).
18. Shakirova O.G., Lavrenova L.G., Korotaev E.V., Kuratieva N.V., Kolokolov F.A. and Burdukov A.B. Structure and spin crossover in an iron (II) compound with tris(pyrazol-1-yl)methane and the complex Eu(dipic)2(Hdipic)]2– anion. J. Struct. Chem. 57: 471-477 (2016).
19. Siddiqi Z.A., Khalid M., Shahid M., Kumar S., Sharma P.K., Siddique A. and Anjuli. H-bonded supramolecular assembly via proton transfer: Isolation, X-ray crystallographic characterization and SOD mimic activity of [Cu(dipic)2]2[PA-H]4.5H2O. J. Mol. Struct. 1033: 98-103 (2013).
20. Kirillova M.V., Kirillov A.M., DaSilva M.F.C.G., Kopylovich M.N., DaSilva J.J.R.F. and Pombeiro A.J.L. 3D Hydrogen Bonded Metal-Organic Frameworks Constructed from [M(H2O)6][M'(dipicolinate)2].mH2O (M/M' = Zn/Ni or Ni/Ni). Identification of Intercalated Acyclic (H2O)6/(H2O)10 Clusters. Inorg. Chim. Acta 361: 1728-1737 (2008).
21. Devereux M., McCann M., Leon V., McKee V. and Ball R.J. Synthesis and catalytic activity of manganese(II) complexes of heterocyclic carboxylic acids: X-ray crystal structures of [Mn(pyr)2]n, [Mn(dipic)(bipy)2]·4.5H2O and [Mn(chedam)(bipy)]·H2O (pyr=2-pyrazinecarboxylic acid; dipic=pyridine-2,6-dicarboxylic acid; chedam=chelidamic acid(4-hydroxypyridine-2,6-dicarboxylic acid); bipy=2,2-bipyridine). Polyhedron 21: 1063-1071 (2002).
22. Kanthimathi M., Dhathathreyan A. and Nair B.V. Nanosized nickel oxide using bovine serum albumin as template. Mater. Lett. 58: 2914–2917 (2004).
23. Morales M.R., Barbero B.P. and Cadús L.E. Evaluation and characterization of Mn – Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content. Fuel 87: 1177-1186 (2008).
24. Yesilel O.Z., Ilker I., Refat M.S. and Ishida H. Syntheses and characterization of two copper pyridine-dicarboxylate compounds containing water clusters. Polyhedron 29: 2345-2351 (2010).
1. Ratnasamy C. and Wagner J.P. Water gas shift catalysis. Catal. Rev. 51: 325-440 (2009).
2. Tanaka Y., Takeguchi T., Kikuchi R. and Eguchi K. Influence of preparation method and additive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels. Appl. Catal. A. 279: 59-66 (2005).
3. Tanaka Y., Utaka T., Kikuchi R., Takeguchi T., Sasaki K. and Eguchi K. Water Gas Shift Reaction for the Reformed Fuels over Cu/MnO Catalyst Prepared via Spinel-Type Oxide. J. Catal. 215: 271–278 (2003).
5. Hutchings G.J., Copperthwaite R.G., Gottschalk F.M., Hunter R., Mellor J., Orchard S.W. and Sangiorgio T. A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide and copper manganese oxide as catalysts for the water-gas shift reaction. J. Catal. 137: 408–422 (1992).
6. Ke-duan Z., Quan-sheng L., Ya-gang Z., Shuang H. and Run-xia H. Effect of precipitator on the texture and activity of copper-manganese mixed oxide catalysts for the water gas shift reaction. J. Fuel Chem. Technol. 38: 445−451 (2010).
7. Papavasiliou J., Avgouropoulos G. and Ioannides T. Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl. Catal. B. 88: 490-496 (2009).
8. Farzanfar J. and Rezvani A.R. Study of a Mn–Cr/TiO2 mixed oxide nanocatalyst prepared via an inorganic precursor complex for high-temperature water–gas shift reaction. C. R. Chimie. 18: 178-186 (2015).
9. Farzanfar J. and Rezvani A.R. Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni–Co nanocatalysts. Res. Chem. Intermed. 41: 8975-9001 (2015).
10. Huang Q., Yan X., Li B., Xu X., Chen Y., Zhu S. and Shen S. Activity and stability of Pd/MMnOx (M = Co, Ni, Fe and Cu) supported on cordierite as CO oxidation catalysts. J. IND. ENG. CHEM. 19: 438–443 (2013).
11. Yan X., Huang Q., Li B., Xu X., Chen Y., Zhu S. and Shen S. Catalytic performance of LaCo0.5M0.5O3 (M = Mn, Cr, Fe, Ni, Cu) perovskite-type oxides and LaCo0.5Mn0.5O3 supported on cordierite for CO oxidation. J. IND. ENG. CHEM. 19: 561–565 (2013).
12. Mansouri M., Atashi H., Tabrizi F.F., Mirzaei A.A. and Mansouri G. Kinetics studies of nano-structured cobalt–manganese oxide catalysts in Fischer–Tropsch synthesis. J. IND. ENG. CHEM. 19: 1177–1183 (2013).
13. Ma X., Sun H., Sun Q., Feng X., Guo H., Fan B., Zhao S., He X. and Lv L. Catalytic oxidation of CO and o-DCB over CuO/CeO2 catalysts supported on hierarchically porous silica. Catal. Commun.12: 426–430 (2011).
14. Tabatabaee M., Kukovec B.M. and Kazeroonizadeh M. A unique example of a co-crystal of [Ag(atr)2][Cr(dipic)2] (dipic = dipicolinate; atr = 3-amino-1H-1,2,4-triazole) and dinuclear [Cr(H2O)(dipic)(µ-OH)]2, with different coordination environment of Cr(III) ions. Polyhedron 30: 1114-1119 (2011).
15. Saravani H., Ghahfarokhi M.T. and Esmaeilzaei M.R. Synthesis and Characterization of Superparamagnetic NiBaO2 Nano-Oxide Using Novel Precursor Complex [Ba(H2O)8][Ni(dipic)2]. J. Inorg. Organomet. Polym. 26: 660-666 (2016).
16. Tabatabaee M., Tahriri M., Tahriri M., Ozawa Y., Neumuller B., Fujioka H. and Toriumi K. Preparation, crystal structures, spectroscopic and thermal analyses of two co-crystals of [M(H2O)6][M(dipic)2] and (atrH)2[M(dipic)2] (M = Zn, Ni, dipic = dipicolinate; atr = 3-amino-1H-1,2,4-triazole) with isostructural crystal systems. Polyhedron 33: 336-340 (2012).
17. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, New York, (1997).
18. Shakirova O.G., Lavrenova L.G., Korotaev E.V., Kuratieva N.V., Kolokolov F.A. and Burdukov A.B. Structure and spin crossover in an iron (II) compound with tris(pyrazol-1-yl)methane and the complex Eu(dipic)2(Hdipic)]2– anion. J. Struct. Chem. 57: 471-477 (2016).
19. Siddiqi Z.A., Khalid M., Shahid M., Kumar S., Sharma P.K., Siddique A. and Anjuli. H-bonded supramolecular assembly via proton transfer: Isolation, X-ray crystallographic characterization and SOD mimic activity of [Cu(dipic)2]2[PA-H]4.5H2O. J. Mol. Struct. 1033: 98-103 (2013).
20. Kirillova M.V., Kirillov A.M., DaSilva M.F.C.G., Kopylovich M.N., DaSilva J.J.R.F. and Pombeiro A.J.L. 3D Hydrogen Bonded Metal-Organic Frameworks Constructed from [M(H2O)6][M'(dipicolinate)2].mH2O (M/M' = Zn/Ni or Ni/Ni). Identification of Intercalated Acyclic (H2O)6/(H2O)10 Clusters. Inorg. Chim. Acta 361: 1728-1737 (2008).
21. Devereux M., McCann M., Leon V., McKee V. and Ball R.J. Synthesis and catalytic activity of manganese(II) complexes of heterocyclic carboxylic acids: X-ray crystal structures of [Mn(pyr)2]n, [Mn(dipic)(bipy)2]·4.5H2O and [Mn(chedam)(bipy)]·H2O (pyr=2-pyrazinecarboxylic acid; dipic=pyridine-2,6-dicarboxylic acid; chedam=chelidamic acid(4-hydroxypyridine-2,6-dicarboxylic acid); bipy=2,2-bipyridine). Polyhedron 21: 1063-1071 (2002).
22. Kanthimathi M., Dhathathreyan A. and Nair B.V. Nanosized nickel oxide using bovine serum albumin as template. Mater. Lett. 58: 2914–2917 (2004).
23. Morales M.R., Barbero B.P. and Cadús L.E. Evaluation and characterization of Mn – Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content. Fuel 87: 1177-1186 (2008).
24. Yesilel O.Z., Ilker I., Refat M.S. and Ishida H. Syntheses and characterization of two copper pyridine-dicarboxylate compounds containing water clusters. Polyhedron 29: 2345-2351 (2010).