Document Type: Final File


1 Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran 14115-134, Islamic Republic of Iran

2 Faculty of Informatics, Chemnitz University of Technology, Straße der Nationen 62

3 R. B216, 09111 Chemnitz, Germany


Wavelets and radial basis functions (RBF) have ubiquitously proved very successful to solve different forms of partial differential equations (PDE) using shifted basis functions, and as with the other meshless methods, they have been extensively used in scattered data interpolation. The current paper proposes a framework that successfully reconciles RBF and adaptive wavelet method to solve the Perona-Malik equation in terms of locally shifted functions. We take advantage of the scaling functions that span multiresolution subspaces to provide resilient grid comprising centers. At the next step, the derivatives are computed and summed over these local feature collocations to generate the solution. We discuss the stability of the solution and depict how convergence could be granted in this context. Finally, the numerical results are provided to illustrate the accuracy and efficiency of the proposed method.


1.             Moody J. and Darken C. Fast learning in networks of locally-tuned processing units. Neural Computation 1:281-294 (1989).

2.             Yee P. and Haykin S. A Dynamic regularized Gaussian radial basis function network for nonlinear nonstationary time series prediction. IEEE Signal Processing Society 47(9): 2503-2521 (1999).

3.             Buhmann M. D. Radial basis functions. Cambridge University Press, Cambridge (2003).

4.             Uhlir K. and Skala V. Radial basis function use for the restoration of damaged images. Computer Vision and Graphics. In: Computational Imaging and Vision book series (CIVI, volume 32) pp. 839-844 (2006).

5.             Amattouch M.R.  Belhadj and H. Nabila, A modified fixed point method for the Perona-Malik equation, Journal of Mathematics and System Science 7: 175-185 (2017).

6.             Guidotti P. Kim Y. and Lambers J. Image restoration with a new class of forward-backward-forward diffusion equations of Perona–Malik type with applications to satellite image enhancement, SIAM J. Imaging Sci. 6: 1416–1444 (2013).

7.             Guo Z. Sun J.  Zhang D. and Wu B. Adaptive Perona–Malik model based on the variable exponent for image denoising, IEEE Trans. Image Process 21:  958–967 (2012),

8.             Mescheder L.M. and Lorenz D.A. An extended Perona–Malik model based on probabilistic models, J Math Imaging and Vsiion 60: 128–144 (2018).

9.             Maiseli B. Msuya H. Kessy S. and Kisangiri M. Perona–Malik model with self-adjusting shape-defining constant, Information Processing Letters 137: 26-32 (2018).

10.          Vrankar L. Ali Libre N. Ling L. Turk G. and Runovc. F.  Solving moving-boundary problems with the wavelet adaptive radial basis functions method. Computers & Fluids 86: 37-44 (2013).

11.          Blu T. and Unser M. Wavelets, fractals, and radial basis functions. IEEE Transactions on Signal Processing 50: 543-553 (2002).

12.          Rannacher R. and Wendland W.L. On the order of pointwise convergence of some boundary element methods. Part II: Operators of positive order. Math. Modeling Numer. Anal. 22:343-362 (1988).

13.          Larsson E. and Fornberg B. A numerical study of some radial basis function based solution methods for elliptic PDEs. Computers Math. Appl. 46: 891-902 (2003).

14.          Meyer Y. Wavelets and operators. Cambridge Univ. Press, Cambridge (1992).

15.          Mallat S. A wavelet tour of signal processing. Academic Press, New York (1999).

16.          Unser M. A. and Blu T. A. Comparison of wavelets from the point of view of their approximation error. Proc. SPIE 3458. In: Wavelet Applications in Signal and Image Processing VI, ed. A F Laine, M A Unser, A Aldroubi (1998).

17.          Debnath L. Wavelet transforms and time-frequency signal analysis. Birkhäuser, Boston (2001).

18.          Kelly S.E. Kon M.A. and Raphael L.A. Local convergence for wavelet expansion. J. Func. Anal. 126: 102-138 (1994).

19.          Zhongying C. Micchelli C.A. and Yuesheng X. A multilevel method for solving operator equations. Journal of Mathematical Analysis and Applications 262: 688–699 (2001).

20.          Kamranian M. Dehghan M. and Tatari. M. An image denoising approach based on a meshfree method and the domain decomposition technique. Engineering Analysis with Boundary Elements 39: 101-110 (2014).

21.          Handlovtčová A. and Krivá Z. Error estimates for finite volume scheme for Perona-Malik equation. Acta Math. Univ. Comenianae LXXIV: 79-94 (2005).

22.          Mei S.L. and Zhu. D.H. HPM-based dynamic sparse grid approach for Perona-Malik equation. Scientific World Journal, 417486 (2014).

23.          Rumpf  M. and Preusser T. A level set method for anisotropic geometric diffusion in 3D image processing. SIAM J. Appl. Math. 62(5): 1772-1793(2006).

24.          Alvarez L. Lions P.L. and Morel J.M. Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM J. Numer. Anal. 29(3):845-866 (1992).