Document Type: Original Paper

Authors

1 Graduate student of geophysics, Institute of Geophysics, University of Tehran, Iran

2 Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran

Abstract

Estimating the gravity anomaly causative bodies boundary can facilitate the gravity field interpretation. In this paper, 2D discrete wavelet transform (DWT) is employed as a method to delineate the boundary of the gravity anomaly sources. Hence, the GRACE’ satellite gravity data is decomposed using DWT. DWT decomposites a single approximation coefficients into four distinct components: the approximation, horizontal, vertical and diagonal. For evaluating the efficiency of wavelets, both the noisy and free-noise synthetic gravity data, have been decomposed at level 1 with six discrete two-dimensional wavelets. In this manuscript, the satellite gravity data of a part of the Makran region (in the south-east of Iran) is decomposed by DWT in order to detect the Saravan Fault trend. The outcome indicates the acceptable performance of the Haar and Biorthogonal mother wavelets in detecting the edges of the real and synthetic gravity anomaly sources. Also, the results demonstrate that the satellite gravity data can be appropriate to study the regional geological structures, particular in revealing the hidden faults where have great importance in earthquake risk analysis.

Keywords

Main Subjects

  1. Eshaghzadeh, A., Identification of Suitable Discrete Wavelet for Gravity Data Decomposition. 2nd conference of geology and exploration of resources.Shiraz, Iran (2016).  

2. Fedi, M., and  Quarta, T., Wavelet analysis for the regionalresidual and local separation of potential field    anomalies. Geophys. Prosp, 46: 507–525 (1998).

3. Hornby,P.,  Boschetti,F., and Horovitz,F.G. Analysis of  potential field   data in the wavelet domain.   Geophys. J. Internat, 137: 175–196 (1999).

4. Leblanc, G.E., and Morris, W.A. Denoising of aeromagnetic data via the wavelet transform. Geophysics, 66:  1793–1804 (2001).

5. Ridsdill-Smith, T. A., and Dentith, M. C. The wavelet transform in aeromagnetic processing. Geophysics, 64: 1003–1013 (1999).

6. Trad,D.O., and Travassos, J. M. Wavelet filtering of magnetotelluric data. Geophysics, 65: 482–491 (2000).

7. Holden, D.J., Archibald, N.J., Boschetti, F., and Jessell, M.W.  Inferring geological structures using wavelet-based multiscale edge analysis and forward models. Explor. Geophys, 31: 67–71 (2000).

8. Moreau, F., Gibert, D., Holschneider,M., and Saracco, G. Identification of sources of potential fields with the continuous wavelet transform: basic theory. J. Geophys. Res, 104 (B3): 5003–5013 (1999).

9. Deighan, A. J., and Watts, D. R. Ground-roll suppression using the wavelet transform. Geophysics, 62: 1869–1903 (1997).

10. Miller,H.G., and Singh,V. Potential field tilt - a new concept for location of potential field sources. Journal of Applied Geophysics, 32: 213–217 (1994).

11. Wijns, C., Perez, C., and Kowalczyk, P. Theta map: edge detection in   magnetic data. Geophysics, 70 (4): 39–43 (2005).

12.Verduzco, B., Fairhead, J.D., and Green, C.M. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23 (2): 116–119 (2004).

13. Cooper, G.R.J., and Cowan, D.R. Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32: 1585–1591 (2006).

14. Cooper G.R.J. Balancing images of potential field data. Geophysics, 74: L17–L20 (2009).

15. Ma, G., and Li, L. Edge detection in potential fields with the normalized total horizontal derivative. Computers & Geosciences, 41: 83–87 (2012).

16. Cooper, G.R.J., and Cowan, D.R. Terracing potential field data. Geophysical Prospecting, 57: 1067–1071(2009).

17. Ferreira, F. J. F., J. de Souza, A. B. S. Bongiolo, and L. G. de Castro. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78: J33–J41(2013).

18. Cooper, G.R.J., and Cowan, D.R. Edge enhancement of potential-field data using normalized statistics. Geophysics,73(3): H1–H4 (2008).

19. Lili Li, Guoqing Ma and Xiaojuan Du. Edge Detection in Potential-Field Data by Enhanced Mathematical Morphology Filter. Pure and Applied Geophysics, 170 (4):  645-653 (2013).

20. Eshaghzadeh A. Image Edge Detection of the Total Horizontal Gradient of Gravity Data Using the Normalized Tilt Angle. Geodynamics ResearchInternational Bulletin, 3(4): P. XXVIII to XXXIII (2015).

21. Eshaghzadeh A.  gravity anomalies edge intensification using  the tilt angle of the balanced total horizontal derivative. Geoinformatics: theoretical and applied aspects, 10-13 May, Kiev, Ukraine, (2016).

22. Pala S.K.,  and Majumdarb T.J. Geological appraisal over the Singhbhum-Orissa Craton, India using GOCE, EIGEN6-C2 and in-situ gravity data. International Journal of Applied Earth Observations and Geoinformation, 35: 96-119 (2015).

23. Satya N, Soumyashree D.S., Pal S.K., Ujjawal K., Vipin K.P., Majumdar  T.J., and Avinash C. Delineation of structural features over a part of the Bay of Bengal using total and balanced horizontal derivative techniques. Geocarto International, 32(1): 1-16 (2016).

24. Mallat, S. Multi frequency Channel decomposition and wavelet models IEEEANS. Acoustics, 37: 209–211 (1989).

25. Addison, P.S.: The Illustrated Wavelet Handbook: Introductory Theory and Applications in   Science, Engineering, Medicine and Finance. Institute of Physics Publishing, Bristol, UK. (2002)

26. Alp, H., Albora, A.M., and Tur, H. A view of tectonic structure and gravity anomalies of Hatay region southern Turkey using wavelet analysis. J. Appl. Geophys, 75: 498–505 (2011).

27. Daubechies, I. Ten Lectures on Wavelets. Vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM Publications, Philadelphia, (1992).

28. Farimani, F.A.A., Dehghan, S., Role of Saravan Thrust Fault on Formation and Development of Saravan Catchment Basin. Geography And Development.  12 (35): 19-31 (2014).