Document Type : Original Paper

Authors

1 Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Islamic Republic of Iran

2 Department of Biology, Faculty of Sciences, University of Guilan, Rasht,Islamic Republic of Iran

Abstract

The purpose of this study was the surface modification of nano MOF-5 (NMOF-5) or IRMOF-1 (Zn4O(C8H4O4)3) in order to prevent its rapid degradation in the phosphate-buffered saline (PBS), along with the simultaneous increase in its biocompatibility. The NMOF-5 sample was synthesized under the ultrasound irradiation and then it was loaded with acetaminophen and ibuprofen. Each assembly (NMOF-5@drug) was then coated with a silica layer. The obtained nanoparticles were identified by FT-IR spectroscopy, N2 adsorption porosimetry (BET), X-ray powder diffraction (XRD), the thermogravimetric analysis (TGA), and the field emission scanning electron microscopy (FE-SEM). UV/Vis spectroscopy was used to determine the release profile of the drugs from the bare and silica coated assemblies. Silica coating resulted in an enhanced stability in PBS, and the sustained release of each drug was achieved within 3 days. MTT (Methylthiazolyldiphenyl-tetrazolium bromide) assay on NIH3T3 mouse embryonic fibroblast cells as a model of the cell line showed that silica coating NMOF-5 with silica leads in the more biocompatibility and less cytotoxicity. The cell viability was increased up to 100% for the silica coated NMOF-5 compared to the bare NMOF-5. NMOF-5 and NMOF-5@silica were utilized in the injectable drug delivery for the first time. In this study, the toxicological studies about silica coated NMOF-5 in the drug delivery systems were developed.

Keywords

  1. Yu S., Li S., Liu Y., Cui S. and Shen X., High-Performance Microporous Polymer Membranes Prepared by Interfacial Polymerization for Gas Separation. Membrane Sci. 573: 425-438 (2019).
  2. Nitani M., Nakayama K., Maeda K., Omori M. and Uno M., Organic Temperature Sensors Based on Conductive Polymers Patterned by a Selective-Wetting Method. Electron. 71: 164-168 (2019).
  3. Rabiee N., Hajebi S., Bagherzadeh M., Ahmadi S., Rabiee M., Roghani-Mamaqani H., Tahriri M., Tayebi L. and Hamblin M. R. Stimulus-Responsive Polymeric Nanogels as Smart Drug Delivery Systems. Acta Biomater. 92: 1-18 (2019).
  4. Rigby C. R., Han H., Bhowmik P. K., Bahari M., Chang A., Harb J. N., Lewis R. S. and Watt G. D., Soluble Viologen Polymers as Carbohydrate Oxidation Catalysts for Alkaline Carbohydrate Fuel Cells. Electroanal. Chem. 823: 416-421 (2018).
  5. Tranchemontagne D. J., Mendoza-Cortés J. L., O’Keeffe M. and Yaghi O. M., Secondary Building Units, Nets and Bonding in the Chemistry of Metal–Organic Frameworks. Soc. Rev. 38: 1257-1283 (2009).
  6. Hall J. N. and Bollini P., Structure, Characterization, and Catalytic Properties of Open-Metal Sites in Metal Organic Frameworks. Chem. Eng. 4(2): 207-222 (2019).
  7. Yang D. and Gates B. C., Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. C. S. Catal. 9(3): 1779-1798 (2019).
  8. Qiao Z., Cheetham A. K. and Jiang J., Identifying the Best Metal–Organic Frameworks and Unravelling Different Mechanisms for the Separation of Pentane Isomers. Syst. Des. Eng. 4: 609-615 (2019).
  9. Connolly B. M., Aragones-Anglada M., Gandara-Loe J., Danaf N. A., Lamb D. C., Mehta J. P., Vulpe D., Wuttke S., Silvestre-Albero J., Moghadam P. Z. and Wheatley A. E., Tuning Porosity in Macroscopic Monolithic Metal-Organic Frameworks for Exceptional Natural Gas Storage. Commun. 10(1): 2345-2355 (2019).
  10. Zhu C., Perman J. A., Gerald R. E., Ma S. and Huang J. Chemical Detection Using a Metal–Organic Framework Single Crystal Coupled to an Optical Fiber. C. S. Appl. Mater. Inter. 11(4): 4393-4398 (2019).
  11. Martins L., Macreadie L. K., Sensharma D., Vaesen S., Zhang X., Gough J. J., O'Doherty M., Zhu N. Y., Rüther M., O'Brien J. E. and Bradley A. L., Light-Harvesting, 3rd Generation RuII/CoII MOF with a Large, Tubular Channel Aperture. Commun. 55(34): 5013-5016 (2019).
  12. Motakef-Kazemi N., Shojaosadati S. and Morsali A., In Situ Synthesis of a Drug-Loaded MOF at Room Temperature. Mesopor. Mat. 186: 73-79 (2014).
  13. Nejadshafiee V., Naeimi H., Goliaei B., Bigdeli B., Sadighi A., Dehghani S., Lotfabadi A., Hosseini M., Nezamtaheri M.S., Amanlou M. and Sharifzadeh M., Magnetic Bio-Metal–Organic Framework Nanocomposites Decorated with Folic Acid Conjugated Chitosan as a Promising Biocompatible Targeted Theranostic System for Cancer Treatment. Sci. Eng. C. 99: 805-815 (2019).
  14. Cho K., Wang X., Nie S., Chen Z. G., Shin D. M., Therapeutic Nanoparticles for Drug Delivery in Cancer. Cancer. Res. 14: 1310-1316 (2008).
  15. Darabi E., Ebadi N., Mehrabi S., Shakoori A. and Noori Daloii M. R., An Enrichment Method of Cell-free Fetal DNA from Mothers in the 11th Week of Pregnancy; On The Way of Non-invasive Prenatal Diagnosis of Beta-thalassemia as a Single Gene Disorder. Sci. I. R. I. 29(4): 305-309 (2018).
  16. France M. M., del Rio T., Travers H., Raftery E., Xu K., Langer R., Traverso G., Lennerz J. K. and Schoellhammer C. M., Ultra-Rapid Drug Delivery in the Oral Cavity Using Ultrasound. Control. Release. 304: 1-6 (2019).
  17. Wang L. V. and Hu S., Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. 335(6075): 1458-1462 (2012).
  18. Cai W., Chu C. C., Liu G. and Wáng Y. X. J., Metal–Organic Framework‐Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. 11: 4806-4822 (2015).
  19. Silva I. M. P., Carvalho M. A., Oliveira C. S., Profirio D. M., Ferreira R. B., Corbi P. P. and Formiga A. L., Enhanced Performance of a Metal-Organic Framework Analogue to MIL-101 (Cr) Containing Amine Groups for Ibuprofen and Nimesulide Controlled Release. Chem. Commun. 70: 47-50 (2016).
  20. Wu Y. N., Zhou M., Li S., Li Z., Li J., Wu B., Li G., Li F. and Guan X., Magnetic Metal–Organic Frameworks: γ‐Fe2O3@MOFs via Confined In Situ Pyrolysis Method for Drug Delivery. 10: 2927-2936 (2014).
  21. Taylor-Pashow K. M., Della Rocca J., Xie Z., Tran S. and Lin W., Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal− Organic Frameworks for Imaging and Drug Delivery. Am. Chem. Soc. 131: 14261-14263 (2009).
  22. Li H., Eddaoudi M., O'Keeffe M. and Yaghi O. M., Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. 402(6759): 276-279 (1999).
  23. Liu D., Huxford R. C. and Lin W., Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Chem. Int. Ed. 50: 3696-3700 (2011).
  24. Aykaç A., Noiray M., Malanga M., Agostoni V., Casas-Solvas J. M., Fenyvesi É., Gref R. and Vargas-Berenguel A., A Non-Covalent “Click Chemistry” Strategy to Efficiently Coat Highly Porous MOF Nanoparticles with a Stable Polymeric Shell. Biophys. Acta. 1861(6): 1606-1616 (2017).
  25. Hartlieb K. J., Ferris D. P., Holcroft J. M., Kandela I., Stern C. L., Nassar M. S., Botros Y. Y. and Stoddart J. F., Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies. Pharm. 14(5): 1831-1839 (2017).
  26. Li H., Hill M. R., Huang R., Doblin C., Lim S., Hill A. J., Babarao R. and Falcaro P., Facile Stabilization of Cyclodextrin Metal–Organic Frameworks Under Aqueous Conditions via the Incorporation of C60 in Their Matrices. Commun. 52(35): 5973-5976 (2016).
  27. Agostoni V., Horcajada P., Noiray M., Malanga M., Aykaç A., Jicsinszky L., Vargas-Berenguel A., Semiramoth N., Daoud-Mahammed S., Nicolas V. and Martineau C., A “Green” Strategy to Construct Non-Covalent, Stable and Bioactive Coatings on Porous MOF Nanoparticles. Rep-UK. 5: 7925-7931 (2015).
  28. Golmohamadpour A., Bahramian B., Shafiee A. and Ma’mani L., Slow Released Delivery of Alendronate Using β-Cyclodextrine Modified Fe–MOF Encapsulated Porous Hydroxyapatite. Inorg. Organomet. P. 28(5): 1991-2000 (2018).
  29. Liu S., Zhai L., Li C., Li Y., Guo X., Zhao Y. and Wu C., Exploring and Exploiting Dynamic Noncovalent Chemistry for Effective Surface Modification of Nanoscale Metal–Organic Frameworks. C. S. Appl. Mater. Inter. 6(8): 5404-5412 (2014).
  30. Rieter W. J., Taylor K. M. and Lin W., Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing. Am. Chem. Soc. 129(32): 9852-9853 (2007).
  31. Wang X. G., Dong Z. Y., Cheng H., Wan S. S., Chen W. H., Zou M. Z., Huo J. W., Deng H. X. and Zhang X. Z., A Multifunctional Metal–Organic Framework Based Tumor Targeting Drug Delivery System for Cancer Therapy. 7(38): 16061-16070 (2015).
  32. Bradshaw D., Garai A. and Huo J., Metal–Organic Framework Growth at Functional Interfaces: Thin Films and Composites for Diverse Applications. Soc. Rev. 41(6): 2344-2381 (2012).
  33. Sivakumar P., Priyatharshni S., Nagashanmugam K. B., Thanigaivelan A. and Kumar K., Chitosan Capped Nanoscale Fe-MIL-88B-NH2 Metal-Organic Framework as Drug Carrier Material for the pH Responsive Delivery of Doxorubicin. Res. Express. 4(8): 085023-085032 (2017).
  34. Hidalgo T., Giménez-Marqués M., Bellido E., Avila J., Asensio M. C., Salles F., Lozano M. V., Guillevic M., Simón-Vázquez R., González-Fernández A. and Serre C., Chitosan-Coated Mesoporous MIL-100 (Fe) Nanoparticles as Improved Bio-Compatible Oral Nanocarriers. Rep-UK. 7: 43112 (2017).
  35. Abánades Lázaro I., Haddad S., Rodrigo-Muñoz J. M., Orellana-Tavra C., del Pozo V., Fairen-Jimenez D. and Forgan R. S., Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. C. S. Appl. Mater. Inter. 10(6): 5255-5268 (2018).
  36. Lázaro I. A., Haddad S., Sacca S., Orellana-Tavra C., Fairen-Jimenez D. and Forgan R. S., Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. 2(4): 561-578 (2017).
  37. Xu C., Zhang C., Wang Y., Li L., Li L. and Whittaker A. K., Controllable Synthesis of a Novel Magnetic Core–Shell Nanoparticle for Dual-Modal Imaging and pH-Responsive Drug Delivery. 28(49): 495101-495111 (2017).
  38. Zhang L. P., Mo C. E., Huang Y. P. and Liu Z. S., Preparation of Liquid Crystalline Molecularly Imprinted Polymer Coated Metal Organic Framework for Capecitabine Delivery. Part. Syst. Char. 36(1): 1800355-1800364 (2019).
  39.  

 

  • Wan X., Zhong H., Pan W., Li Y., Chen Y., Li N. and Tang B. Programmed Release of Dihydroartemisinin for Synergistic Cancer Therapy Using a CaCO3 Mineralized Metal-Organic Framework. Chem. Int. Edit. 58(40): 14134-14139 (2019).
  1. Dong S., Chen Q., Li W., Jiang Z., Ma J. and Gao H., A Dendritic Catiomer with an MOF Motif for the Construction of Safe and Efficient Gene Delivery Systems. Mater. Chem. B. 5(42): 8322-8329 (2017).
  2. Sun P., Li Z., Wang J., Gao H., Yang X., Wu S., Liu D. and Chen Q. Transcellular Delivery of Messenger RNA Payloads by a Cationic Supramolecular MOF Platform. Commun. 54(80): 11304-11307 (2018).
  3. Chen S., Chen Q., Dong S., Ma J., Yang Y. W., Chen L. and Gao H., Polymer Brush Decorated MOF Nanoparticles Loaded with AIEgen, Anticancer Drug, and Supramolecular Glue for Regulating and In Situ Observing DOX Release. Biosci. 18(12): 1800317-1800322 (2018).
  4. Zhang H., Jiang W., Liu R., Zhang J., Zhang D., Li Z. and Luan Y., Rational Design of Metal Organic Framework Nanocarrier-Based Codelivery System of Doxorubicin Hydrochloride/Verapamil Hydrochloride for Overcoming Multidrug Resistance with Efficient Targeted Cancer Therapy. C. S. Appl. Mater. Inter. 9(23): 19687-19697 (2017).
  5. Shi Z., Chen X., Zhang L., Ding S., Wang X., Lei Q. and Fang W., FA-PEG Decorated MOF Nanoparticles as a Targeted Drug Delivery System for Controlled Release of an Autophagy Inhibitor. Sci-UK. 6(10): 2582-2590 (2018).
  6. Giménez‐Marqués M., Bellido E., Berthelot T., Simón‐Yarza T., Hidalgo T., Simón‐Vázquez R., González‐Fernández Á., Avila J., Asensio M. C., Gref R. and Couvreur P., GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness. 14(40): 1801900-1801910 (2018).
  7. Su L., Wu Q., Tan L., Huang Z., Fu C., Ren X., Xia N., Chen Z., Ma X., Lan X. and Zhang Q., High Biocompatible ZIF-8 Coated by ZrO2 for Chemo-Microwave Thermal Tumor Synergistic Therapy. C. S. Appl. Mater. Inter. 11(11): 10520-10531 (2019).
  8. Zhang H., Shang Y., Li Y. H., Sun S. K. and Yin X. B., Smart Metal–Organic Framework-Based Nanoplatforms for Imaging-Guided Precise Chemotherapy. C. S. Appl. Mater. Inter. 11(2): 1886-1895 (2018).
  9. Vahed T. A., Naimi-Jamal M. R. and Panahi L., Alginate-Coated ZIF-8 Metal-Organic Framework as a Green and Bioactive Platform for Controlled Drug Release. Drug Deliv. Sci. Tec. 49: 570-576 (2019).
  10. Cutrone G., Qiu J., Menendez-Miranda M., Casas-Solvas J. M., Aykaç A., Li X., Foulkes D., Moreira-Alvarez B., Encinar J. R., Ladavière C. and Desmaële D., Comb-Like Dextran Copolymers: A Versatile Strategy to Coat Highly Porous MOF Nanoparticles with a PEG Shell. Polym. 223: 115085-115096 (2019).
  11. Sun Q., Bi H., Wang Z., Li C., Wang X., Xu J., Zhu H., Zhao R., He F., Gai S. and Yang P., Hyaluronic Acid-Targeted and pH-Responsive Drug Delivery System Based on Metal-Organic Frameworks for Efficient Antitumor Therapy. 223: 119473-119483 (2019).