Document Type : Original Paper

Authors

1 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran. I.R Iran.

3 Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran.

Abstract

Head and neck squamous cell carcinoma (HNSCC) represents a large majority of cancers arising from the head and neck, especially the oral cavity. Despite advances in therapy, the five-year survival rate remains low due to the number of patients presenting advanced stages of the disease. The role of epithelial-mesenchymal transition (EMT) in tumorigenesis in HNSCC remains unexplored. The current study aimed at investigating the mRNA expression of the three major factors in tumor specimens to define their functional and pathological roles in this malignancy. The expression of E-cadherin, vimentin, and tumor necrosis factor (TNF)-α were examined in 31 tumorous and 31 non-tumorous samples obtained from patients with HNSCC. Total RNA was extracted from all tumors for cDNA synthesis and mRNA expression levels of E-cadherin, vimentin, and TNF-α were assessed by real-time PCR. We showed a significant decrease in E-cadherin expression and increase in vimentin and TNF-α expression in tumorous samples in comparison with non-tumorous ones (P ≤0.05). Also, there was a significant correlation between vimentin mRNA expression and poor differentiation of tumor (P ≤0.05).Since many studies investigated EMT markers in head and neck cell lines, the current study on human samples can unveil the role of these markers in HNSCC and their relationship with patients` clinicopathological features. Therefore, it might be possible to prevent it, and a therapeutic strategy could be effective in the future.

Keywords

1.   Avissar M., Christensen B.C., Kelsey K.T.,  Marsit C.J. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin. Cancer. Res. 15:2850-2855(2009).
2.   Chin D., Boyle G.M., Porceddu S., Theile D.R., Parsons P.G., Coman W.B. Head and neck cancer: past, present and future. Expert. Rev. Anticancer. Ther. 6:1111-1118 (2006).
3.   Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral. Oncol. 45:309-316 (2009).
4.   Liu L.K., Jiang X.Y., Zhou X.X., Wang D.M., Song X.L., Jiang H.B. Upregulation of vimentin and aberrant expression of E-cadherin/β-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod. Pathol.  23:213-224 (2010).
5.   Vered M., Dayan D., Yahalom R., Dobriyan A., Barshack I., Bello I.O., Kantola S., Salo T. Cancer-associated fibroblasts and epithelial-mesenchymal transition in metastatic oral tongue squamous cell carcinoma. Int. J. Cancer. 127:1356-1362 (2010).
6.   Iwai S., Yonekawa A., Harada C., Hamada M., Katagiri W., Nakazawa M., Yura Y. Involvement of the Wnt-ß-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int. J. Oncol. 37:1095-1103 (2010).
7.   Uraguchi M., Morikawa M., Shirakawa M., Sanada K., Imai K. Activation of WNT family expression and signaling in squamous cell carcinomas of the oral cavity. J. Dent. Res. 83:327-332 (2004).
8.   Tsuchiya R., Yamamoto G., Nagoshi Y., Aida T., Irie T., Tachikawa T. Expression of adenomatous polyposis coli (APC) in tumorigenesis of human oral squamous cell carcinoma. Oral. Oncol. 40:932-940 (2004).
9.   Thiery J.P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer. 2:442-454 (2002).
10. Zeisberg M., Neilson E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119:1429-1437 (2009).
11. Larue L., Bellacosa A. Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene. 24:7443-7454 (2005).
12. Zhou J., Tao D., Xu Q., Gao Z., Tang D. Expression of E-cadherin and vimentin in oral squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 8:3150 (2015).
13. Sawant S.S., Vaidya M.M., Chaukar D.A., Alam H., Dmello C., Gangadaran P., Kannan S., Kane S., Dange P.P., Dey N., Ranganathan K. Clinical significance of aberrant vimentin expression in oral premalignant lesions and carcinomas. Oral. Dis. 20:453-465 (2014).
14. Gilles C., Polette M., Mestdagt M., Nawrocki-Raby B., Ruggeri P., Birembaut P., Foidart J.M. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer. Res. 63:2658-2664 (2003).
15. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 454:436-444 (2008).
16. López‐Novoa J.M., Nieto M.A. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO. Mol. Med. 1:303-314 (2009).
17. Ge K., DuHadaway J., Du W., Herlyn M., Rodeck U., Prendergast G.C. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc. Natl. Acad. Sci. 96:9689-9694 (1999).
18. Bates R.C., Mercurio A.M. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell. 14:1790-1800 (2003).
19. Lombaerts M., Van Wezel T., Philippo K., Dierssen J.W.F., Zimmerman R.M.E., Oosting J., Van Eijk R., Eilers P.H., van De Water B., Cornelisse C.J., Cleton-Jansen A.M. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br. J. Cancer. 94:661-671 (2006).
20. Siebert P.D., Fukuda M. Induction of cytoskeletal vimentin and actin gene expression by a tumor-promoting phorbol ester in the human leukemic cell line K562. J. Biol. Chem.  260:3868-3874 (1985).
21. Jie X., Zhang X., Xu C. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget. (2017).
22. Chaw S., Majeed A.A., Dalley A., Chan A., Stein S., Farah C. Epithelial to mesenchymal transition (EMT) biomarkers–E-cadherin, beta-catenin, APC and Vimentin–in oral squamous cell carcinogenesis and transformation. Oral. Oncol. 48:997-1006 (2012).
23. Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 15:178-196 (2014).
24. Diniz-Freitas M., García-Caballero T., Antúnez-López J., Gándara-Rey J.M., García-García A. Reduced E-cadherin expression is an indicator of unfavourable prognosis in oral squamous cell carcinoma. Oral. Oncol. 42:190-200 (2006).
25. Hsu M.Y., Meier F.E., Nesbit M., Hsu J.Y., Van Belle P., Elder D.E., Herlyn M. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Clin. Pathol. 156:1515-1525 (2000).
26. Tang A., Eller M.S., Hara M., Yaar M., Hirohashi S., Gilchrest B.A. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J. Cell. Sci. 107:983-992 (1994).
27. Chang H.W., Chow V., Lam K.Y., Wei W.I., Wing Yuen A.P. Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer. 94:386-392 (2002).
28. Lim S.C., Zhang S., Ishii G., Endoh Y., Kodama K., Miyamoto S., Hayashi R., Ebihara S., Cho J.S., Ochiai A. Predictive markers for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral tongue. Clin. Cancer. Res. 10:166-172 (2004).
29. Saito Y., Takazawa H., Uzawa K., Tanzawa H., Sato K. Reduced expression of E-cadherin in oral squamous cell carcinoma: relationship with DNA methylation of 5'CpG island. Int. J. Oncol. 12:293-298 (1998).
30. Mandal M., Myers J.N., Lippman S.M., Johnson F.M., Williams M.D., Rayala S., Ohshiro K., Rosenthal D.I., Weber R.S., Gallick G.E., El-Naggar A.K. Epithelial to mesenchymal transition in head and neck squamous carcinoma. Cancer. 112:2088-2100 (2008).
31. Nijkamp M.M., Span P.N., Hoogsteen I.J., van der Kogel A.J., Kaanders J.H., Bussink J. Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Rariother. Oncol. 99:344-348 (2011).
32. Ramaekers F., Haag D., Kant A., Moesker O., Jap P., Vooijs G. Coexpression of keratin-and vimentin-type intermediate filaments in human metastatic carcinoma cells. Proc. Natl. Acad. Sci. 80:2618-2622 (1983).
33. Gilles C., Polette M., Piette J., Delvigne A.C., Thompson E.W., Foidart J.M., Birembaut P. Vimentin expression in cervical carcinomas: association with invasive and migratory potential. J. Pathol. 180:175-180 (1996).
34. Gilles C., Polette M., Zahm J.M., Tournier J.M., Volders L., Foidart J.M., Birembaut P. Vimentin contributes to human mammary epithelial cell migration. J. Cell. Sci. 112:4615-4625 (1999).
35. Paccione R.J., Miyazaki H., Patel V., Waseem A., Gutkind J.S., Zehner Z.E., Yeudall W.A. Keratin down-regulation in vimentin-positive cancer cells is reversible by vimentin RNA interference, which inhibits growth and motility. Mol. Cancer. Ther. 7:2894-2903 (2008).
36. Coussens L.M., Werb Z. Inflammation and cancer. Nature. 420:860-867 (2002).
37. Ricciardi M., Zanotto M., Malpeli G., Bassi G., Perbellini O., Chilosi M., Bifari F., Krampera M. Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells. Br. J. Cancer. 112:1067-1075 (2015).