Document Type : Review Article
Authors
Department of Pharmacognosy, TUMS
Abstract
Alzheimer's disease is an irreversible chronic neurodegenerative disease which is the most common cause of dementia among older adults. According to amyloid hypothesis, cholin neurotransmitters have important roles in CNS memory function, therefore cholinesterase inhibitors can improve the Alzheimer's symptoms. In recent decades, marine creatures have become interested for their huge medicinal effects and potential of pharmaceutical preparations. Marine classifications contain pharmacologically active compounds with capibilities for improvement of cognitive disorders. This article provides a comprehensive overview of cholinesterase inhibitors from marines in 4 categories contain seaweeds, marine sponges, coelenterates and other invertebrates over the 47 years from 1970 to 2017 which resulted into important bioactive extracts and isolated compounds which representing a diverse range of structural classes such as pyrrole derivatives, sesquiterpene acetates, tetrazacyclopentazulene, bromotyrosine derivatives, plastoquinones, farnesylacetones and poly-alkylpyridinium polymers (Poly-APS). For each structural group, the important compounds with cholinesterase inhibition activities were introduced. The result showed marins can be considered as important sources to discover new cholinesterase inhibitiors.
Keywords
Main Subjects
- Anand P. and Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 36(4): 375-399 (2013).
- Musial A., Bajda M. and Malawska B. Recent developments in cholinesterases inhibitors for Alzheimer's disease treatment. Curr. Med. Chem. 14(25): 2654-2679 (2007).
- Ladner C.J. and Lee J.M. Pharmacological drug treatment of Alzheimer disease: The cholinergic hypothesis revisited. J. Neuropath. Exp. Neur. 57(8): 719 (1998).
- Botwinick J., Storandt M, and Berg L. A longitudinal, behavioral study of senile dementia of the Alzheimer type. Arch. Neurol. 43(11): 1124-1127 (1986).
- Hanger D.P., Anderton B.H. and Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med. 15(3): 112-119 (2009).
- Dumont M. and Beal M.F. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med. 51(5): 1014-1026 (2011).
- Cuajungco M.P., Faget K.Y., Huang X., Tanzi R.E. and Bush A.I. Metal chelation as a potential therapy for Alzheimer's disease. Ann. Ny. Acad. Sci. 920(1): 292-304 (2000).
- Huang Y. and L Mucke. Alzheimer Mechanisms and Therapeutic Strategies. Cell J. 148(6): 1204-1222 (2012).
- Budimir A. Metal ions, Alzheimer's disease and chelation therapy. Acta Pharmaceut. 61(1): 1-14 (2011).
- Delrieu J., Piau A., Caillaud C., Voisin T. and Vellas B. Managing cognitive dysfunction through the continuum of Alzheimer’s disease. CNS drugs. 25(3): 213-226 (2011).
- Hodges J.R. Alzheimer's centennial legacy: origins, landmarks and the current status of knowledge concerning cognitive aspects. Brain. 129(11): 2811-2822 (2006).
- Rajaretinam R.K. and Gnana P.V.S. Rapid neurobehavioural analysis based on the effects of an acetylcholinesterase inhibitor from Tephrosia purpurea in Zebrafish. Ann. Neurosci. 19(1): 8 (2012).
- Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer's disease. Neurochem. Res. 28(3-4): 515-522 (2003).
- Nordberg A., Ballard C., Bullock R., Darreh-Shori T. and Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord. 15(2) (2013).
- Darvesh S., Hopkins D.A. and Geula C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 4(2): 131 (2003).
- Suganthy N., Pandian S.K. and Devi K.P. Cholinesterase inhibitors from plants: possible treatment strategy for neurological disorders-a review. Int. J. Biomed. Pharmaceut. Sci. 3: 87-103 (2009).
- Ji H.F., Li X.J. and Zhang H.Y. Natural products and drug discovery. EMBO Rep. 10(3): 194-200 (2009).
- Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P. and Rollinger J.M. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33(8): 1582-1614 (2015).
- Calcul L., Zhang B., Jinwal U.K., Dickey C.A. and Baker B.J. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med. Chem. 4(13): 1751-1761 (2012).
- Montaser R. and Luesch H. Marine natural products: a new wave of drugs? Future Med. Chem. 3(12): 1475-1489 (2011).
- Miljanich G. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11(23): 3029-3040 (2004).
- Senthilkumar K. and Kim S.K. Marine invertebrate natural products for anti-inflammatory and chronic diseases. Evid. Based Complementary Altern. Med. 2013 (2013).
- Leal M.C., Madeira C., Brandão C.A., Puga J. and Calado R. Bioprospecting of marine invertebrates for new natural products—a chemical and zoogeographical perspective. Molecules. 17(8): 9842-9854 (2012).
- Kijjoa A. and Sawangwong P. Drugs and cosmetics from the sea. Mar. Drugs. 2(2): 73-82 (2004).
- Faulkner J. Chemical riches from the oceans. Chem. Br. 31(9): 680-4 (1995).
- Khan I., Samad A., Khan A.Z., Habtemariam S., Badshah A., Abdullah S.M. and Zia-Ul-Haq M. Molecular interactions of 4-acetoxy-plakinamine B with peripheral anionic and other catalytic subsites of the aromatic gorge of acetylcholinesterase: computational and structural insights. Pharm. Biol. 51(6): 722-727 (2013).
- Christian M.C., Pluda J.M., Ho P.T., Arbuck S.G., Murgo A.J. and Sausville E.A. Promising new agents under development by the Division of Cancer Treatment, Diagnosis, and Centers of the National Cancer Institute. Semin. Oncol. (1997).
- Marimuthu J., Essakimuthu P., Narayanan J., Anantham B., Tharmaraj R.J.J.M. and Arumugam S. Phytochemical characterization of brown seaweed Sargassum wightii. Asian Pac. J. Trop. Dis. 2: S109-S113 (2012).
- Sahoo D., Sahu N. and Sahoo D. A critical survey of seaweed diversity of Chilika Lake, India. Algae. 18(1): 1-12 (2003).
- Pereira L. and Neto J.M. Marine algae: biodiversity, taxonomy, environmental assessment, and biotechnology. CRC Press: (2014).
- Kim S.K. Marine Pharmacognosy: Trends and Applications. CRC Press. (2012).
- Ryu G., Park S.H., Kim E.S., Choi B.W., Ryu S.Y. and Lee B.H. Cholinesterase inhibitory activity of two farnesylacetone derivatives from the brown algaSargassum sagamianum. Arch. Pharm. Res. 26(10): 796-799 (2003).
- Myung C.S., Shin H.C. Bao H.Y., Yeo S.J., Lee B.H. and Kang J.S. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res. 28(6): 691-698 (2005).
- Yoon N.Y., Chung H.Y., Kim H.R. and Choi J.E. Acetyl-and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Rev. Fish. Sci. 74(1): 200 (2008).
- Choi B.W., Lee H.S., Shin H.C. and Lee B.H. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer's disease therapy from Ecklonia cava. Pytother. Res. 29(4): 549-553 (2015).
- Yoon N.Y., Lee S.H. and Kim S.K. Phlorotannins from Ishige okamurae and their acetyl-and butyrylcholinesterase inhibitory effects. J. Funct. Foods. 1(4): 331-335 (2009).
- Stirk W.A., Reinecke D.L. and van Staden J. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J. Appl. Phycol. 19(3): 271-276 (2007).
- Pangestuti R. and Kim S. K. Neuroprotective effects of marine algae. Mar. Drugs. 9(5): 803-818 (2011).
- Choi B.W., Ryu G., Park S.H., Kim E.S., Shin J., Roh S.S. and Lee B.H. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for Alzheimer's disease therapy. Phytother. Res.: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 21(5): 423-426 (2007).
- Kartal M., Orhan I., Abu-Asaker M., Senol F.S., Atici T. and Sener B. Antioxidant and anticholinesterase assets and liquid chromatography-mass spectrometry preface of various fresh-water and marine macroalgae. Pharmacogn. Mag. 5(20): 291 (2009).
- Natarajan S., Shanmugiahthevar K.P. and Kasi P.D. Cholinesterase inhibitors from Sargassum and Gracilaria gracilis: seaweeds inhabiting South Indian coastal areas (Hare Island, Gulf of Mannar). Nat. Prod. Res. 23(4): 355-369 (2009).
- Gao Y., Li C., Yin J., Shen J., Wang H., Wu Y. and Jin H. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats. Environ. Toxicol. Phar. 33(2): 304-311 (2012).
- Reddy P.H. Amyloid precursor protein‐mediated free radicals and oxidative damage: Implications for the development and progression of Alzheimer's disease. J. Neurochem. 96(1): 1-13 (2006).
- Suganthy N., Pandian S.K. and Devi K.P. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve): Cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci. Lett. 468(3): 216-219 (2010).
- Ahn C.B., Park P.J. and Je J.Y. Preparation and biological evaluation of enzyme-assisted extracts from edible seaweed (Enteromorpha prolifera) as antioxidant, anti-acetylcholinesterase and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Int. J. Food Sci. Nutr. 63(2): 187-193 (2012).
- Ahn B.R., Moon H.E., Kim H.R., Jung H.A. and Choi J.S. Neuroprotective effect of edible brown alga Eisenia bicyclis on amyloid beta peptide-induced toxicity in PC12 cells. Arch. Pharm. Res. 35(11): 1989-1998 (2012).
- Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M. and Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell B. 39(1): 44-84 (2007).
- Jung H.A., Oh S.H. and Choi J.S. Molecular docking studies of phlorotannins from Eisenia bicyclis with BACE1 inhibitory activity. Bioorg. Med. Chem. Lett. 20(11): 3211-3215 (2010).
- Choi J.S., Haulader S., Karki S., Jung H.J., Kim H.R. and Jung H.A. Acetyl-and butyryl-cholinesterase inhibitory activities of the edible brown alga Eisenia bicyclis. Arch. Pharm. Res. 38(8): 1477-1487 (2015).
- Fang Z., Jeong S.Y., Jung H.A., Choi J.S., Min B.S. and Woo M.H. Capsofulvesins A–C, cholinesterase inhibitors from Capsosiphon fulvescens. Chem. Pharm. Bull. 60(11): 1351-1358 (2012).
- Syad A.N., Shunmugiah K.P. and Kasi P.D. Assessment of anticholinesterase activity of Gelidiella acerosa: implications for its therapeutic potential against Alzheimer’s disease. Evid. Based Complementary Altern. Med. (2012).
- Kawee-ai A., Kuntiya A. and Kim S.M. Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Nat. Prod. Commun. 8(10): 1934578X1300801010 (2013).
- Ghannadi A., Plubrukarn A., Zandi K., Sartavi K. and Yegdaneh A. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds. Res. Pharm. Sci. 8(2): 113 (2013).
- Syad A.N., Shunmugiah K.P. and Kasi P.D. Antioxidant and anti-cholinesterase activity of Sargassum wightii. Pharm. Biol. 51(11): 1401-1410 (2013).
- Pangestuti R. and Kim S.-K. Marine-derived bioactive materials for neuroprotection. Food Sci. Biotechnol. 22(5): 1-12 (2013).
- Je J.Y. and Kim S.K. Water-soluble chitosan derivatives as a BACE1 inhibitor. Bioorg. Med. Chem. 13(23): 6551-6555 (2005).
- Kim S.-K. and Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62(4): 357-368 (2005).
- Lee S.H., Park J.S., Kim S.K., Ahn C.B. and Je J.Y. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Aβ25–35 in PC12 cells. Bioorg. Med. Chem. Lett. 19(3): 860-862 (2009).
- Yoon N.Y., Ngo D.N. and Kim S.K. Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydr. Polym. 78(4): 869-872 (2009).
- Ireland C. and Faulkner D.J. The defensive secretion of the opisthobranch mollusc Onchidella binneyi. Bioorg. Chem. 7(2): 125-131 (1978).
- Abramson S.N., Radic Z.O.R.A.N., Manker D.E.N.I.S.E., Faulkner D.J. and Taylor P.A.L.M.E.R. Onchidal: a naturally occurring irreversible inhibitor of acetylcholinesterase with a novel mechanism of action. Mol. Pharmacol. 36(3): 349-354 (1989).
- Farrokhnia M. and Nabipour I. Marine natural products as acetylcholinesterase inhibitor: comparative quantum mechanics and molecular docking study. Curr. Comput-Aid Drug. 10(1): 83-95 (2014).
- Kanjana-opas A., Panphon S., Fun H.K. and Chantrapromma S. 4-Methyl-3H-pyrrolo [2, 3-c] quinoline. Acta Crystallogr. E. 62(7): o2728-o2730: (2006).
- Sangnoi Y., Sakulkeo O., Yuenyongsawad S., Kanjana-opas A., Ingkaninan K., Plubrukarn A. and Suwanborirux K. Acetylcholinesterase-inhibiting activity of pyrrole derivatives from a novel marine gliding bacterium, Rapidithrix thailandica. Mar. Drugs. 6(4): 578-586 (2008).
- Turk T., Maček P. and Šuput D. Inhibition of acetylcholinesterase by a pseudozoanthoxanthin-like compound isolated from the zoanthid Parazoanthus axinellae (O. Schmidt). Toxicon. 33(2): 133-142 (1995).
- Sepcić K., Mancini I., Vidic I., Franssanito R., Pietra F., Macek P. and Turk T. Antibacterial and anticholinesterase activities of aplysamine-4, a bromotyrosine-derived metabolite of a Red Sea marine sponge. J. Nat. Toxins., 10(3): 181-191 (2001).
- Goud T.V., Srinivasulu M., Reddy V.L.N., Reddy A.V., Rao T.P., Kumar D.S. and Venkateswarlu Y. Two new bromotyrosine-derived metabolites from the sponge Psammaplysilla purpurea. Chem. Pharm. Bull. 51(8): 990-993 (2003).
- Kigoshi H., Kanematsu K. and Uemura D. Turbotoxins A and B, novel diiodotyramine derivatives from the Japanese gastropod Turbo marmorata. Tetrahedron Lett. 40(31): 5745-5748 (1999).
- Turk T., Frangež R. and Sepčić K. Mechanisms of toxicity of 3-alkylpyridinium polymers from marine sponge Reniera sarai. Mar. Drugs. 5(4): 157-167 (2007)
- Sepčić K., Marcel V., Klaebe A., Turk T., Šuput D. and Fournier D. Inhibition of acetylcholinesterase by an alkylpyridinium polymer from the marine sponge, Reniera sarai. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1387(1-2): 217-225 (1998).
- Sepčić K., Bioactive alkylpyridinium compounds from marine sponges. J. Toxicol. Toxin Rev. 19(2): 139-160 (2000).
- Stoddard S., Hamann M. and Wadkins R. Insights and ideas garnered from marine metabolites for development of dual-function acetylcholinesterase and amyloid-β aggregation inhibitors. Mar. Drugs. 12(4): 2114-2131 (2014).
- Gany S.A., Tan S.C. and Gan S.Y. Antioxidative, anticholinesterase and anti-neuroinflammatory properties of Malaysian brown and green seaweeds. World Acad. Sci. Eng. Technol. 8: 1269-75 (2015).
- Murugan A.C., Vallal D., Karim M.R., Govindan N., Yusoff M. and Rahman M. In vitro antiradical and neuroprotective activity of polyphenolic extract from marine algae Padina autralis. J. Chem. Pharm. Res. 7: 355-362 (2015).
- Bianco É.M. Kru J.L., Zimath P.L., Kroger A., Paganelli C.J., Boeder A.M. and Alberton M.D. Antimicrobial (including antimollicutes), antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms–evaluation of extracts and pure compounds. Rev. Bras. Farmacogn. 25(6): 668-676 (2015).
- Machado L.P., Carvalho L.R., Young M.C.M., Cardoso-Lopes E.M., Centeno D.C., Zambotti-Villela L. and Yokoya N.S. Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts. Rev. Bras. Farmacogn. 25(6): 657-662 (2015).
- Coll J.C. and Wright A.D. Tropical marine algae. I. New halogenated monoterpenes from Chondrococcus hornemannii (Rhodophyta, Gigartinales, Rhizophyllidaceae). Aust. J. Chem. 40(11): 1893-1900 (1987).
- Keane S. and Ryan M. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem. Mol. Biol. 29(12): 1097-1104 (1999).
- Syad A.N. and Devi K.P. Assessment of anti-amyloidogenic activity of marine red alga G. acerosa against Alzheimer’s beta-amyloid peptide 25–35. Neurol. Res. 37(1): 14-22 (2015).
- Choi D.Y. and Choi H. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch. Pharm. Res. 38(2): 139-170 (2015).
- Rengasamy K.R., Amoo S.O., Aremu A.O., Stirk W.A., Gruz J., Šubrtová M. and Van Staden J. Phenolic profiles, antioxidant capacity, and acetylcholinesterase inhibitory activity of eight South African seaweeds. J. Appl. Phycol. 27(4): 1599-1605 (2015).
- Shanmuganathan B. and Pandima Devi K. Evaluation of the nutritional profile and antioxidant and anti-cholinesterase activities of Padina gymnospora (Phaeophyceae). Eur. J. Phycol. 51(4): 482-490 (2016).
- Shanmuganathan B., Suryanarayanan V., Sathy S., Narenkumar M., Singh S.K., Ruckmani K. and Devi K.P. Anti-amyloidogenic and anti-apoptotic effect of α-bisabolol against Aβ induced neurotoxicity in PC12 cells. Eur. J. Med. Chem. 143: 1196-1207 (2018).
- Vinoth Kumar T., Yesudas R., Geetharamani D., Lakshmanasenthil S., Suja G., V Amritha Krishna B. and Chacko A. Screening and Partial Purification of Cholinesterase Inhibitor from Microalgae. Curr. Enzym. Inhib. 11(1): 58-64 (2015).
- Alghazwi M., Kan Y.Q., Zhang W., Gai W.P., Garson M.J. and Smid S. Neuroprotective activities of natural products from marine macroalgae during 1999–2015. J. Appl. Phycol. 28(6): 3599-3616 (2016).
- Ellman G.L., Courtney K.D., Andres Jr V. and Featherstone R.M.A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7(2): 88-95 (1961).
- Ingkaninan K., De Best C.M., Van Der Heijden R., Hofte A.J.P., Karabatak B., Irth H. and Verpoorte R. High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J. Chromatogr. A. 872(1-2): 61-73 (2000).
- Sipkema D., Franssen M.C., Osinga R., Tramper J. and Wijffels R.H. Marine sponges as pharmacy. Marine biotechnology. 7(3): 142 (2005).
- Proksch P. Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon. 32(6): 639-655 (1994).
- Perdicaris S., Vlachogianni T. and Valavanidis A. Bioactive natural substances from marine sponges: new developments and prospects for future pharmaceuticals. Nat. Prod. Chem. Res. 1(3): 2329-6836 (2013).
- Belarbi E.H., Gomez A.C., Chisti Y., Camacho F.G. and Grima E.M. Producing drugs from marine sponges. Biotechnol. Adv. 21(7): 585-598 (2003).
- Taylor M.W., Radax R., Steger D. and Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71(2): 295-347 (2007).
- Mehbub M.F., Lei J., Franco C. and Zhang W. Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar. Drugs. 12(8): 4539-4577 (2014).
- Borbone N., De Marino S., Iorizzi M., Zollo F., Debitus C., Esposito G. and Iuvone T. Minor steroidal alkaloids from the marine sponge Corticium sp. J. Nat. Prod. 65(8): 1206-1209 (2002).
- Orhan I.E., Ozcelik B., Konuklugil B., Putz A., Kaban U.G. and Proksch P. Bioactivity screening of the selected Turkish marine sponges and three compounds from Agelas oroides. Rec. Nat. Prod. 6(4): 356-367 (2012).
- Beedessee G., Ramanjooloo A., Surnam‐Boodhun R., Van Soest R.W. and Marie D.E. Acetylcholinesterase‐Inhibitory Activities of the Extracts from Sponges Collected in Mauritius Waters. Chem. Biodivers. 10(3): 442-451 (2013).
- Kurokawa T., Suzuki K., Hayaoka T., Nakagawa T., Izawa T., Kobayashi M. and Harada N. Cyclophostin, acetylcholinesterase inhibitor from Streptomyces lavendulae. J. Antibiot. Res. 46(8): 1315-1318 (1993).
- Neumann R. and Peter H. Insecticidal organophosphates: nature made them first. Experientia. 43(11-12): 1235-1237 (1987).
- Okanya P.W., Mohr K.I., Gerth K., Jansen R. and Müller R. Marinoquinolines A−F, Pyrroloquinolines from Ohtaekwangia kribbensis (Bacteroidetes). J. Nat. Prod. 74(4): 603-608 (2011).
- Pandey S., Sree A., Sethi D.P., Kumar C.G., Kakollu S., Chowdhury L. and Dash S.S.A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds. Microb. Cell Fact. 13(1): 24 (2014).
- Wu B., Ohlendorf B., Oesker V., Wiese J., Malien S., Schmaljohann R. and Imhoff J.F. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Mar. Biotechnol. 17(1): 110-119 (2015).
- El-Hady F.K.A., Abdel-Aziz M.S., Shaker K.H. and El-Shahid Z.A. Tyrosinase, acetylcholinesterase inhibitory potential, antioxidant and antimicrobial activities of sponge derived fungi with correlation to their GC/MS analysis. Int. J. Pharm. Sci. Rev. Res. 26: 338-345 (2014).
- Olsen E.K., Hansen E., Moodie L.W., Isaksson J., Sepčić K., Cergolj M. and Andersen J.H. Marine AChE inhibitors isolated from Geodia barretti: natural compounds and their synthetic analogs. Org. Biomol. Chem. 14(5): 1629-1640 (2016).
- Moodie L.W., Žužek M.C., Frangež R., Andersen J.H., Hansen E., Olsen E.K and Svenson J. Synthetic analogs of stryphnusin isolated from the marine sponge Stryphnus fortis inhibit acetylcholinesterase with no effect on muscle function or neuromuscular transmission. Org. Biomol. Chem. 14(47): 11220-11229 (2016).
- Yang A., Baker B.J., Grimwade J., Leonard A and McClintock J.B. Discorhabdin alkaloids from the Antarctic sponge Latrunculia apicalis. J. Nat. Prod. 58(10): 1596-1599 (1995).
- Botić T., Defant A., Zanini P., Žužek M.C., Frangež R., Janussen D. and Sepčić K. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur. J. Med. Chem. 136: 294-304 (2017).
- Ibrahim S.R. and Mohamed G.A. Pyridoacridine alkaloids from deep-water marine organisms: Structural elucidation. Bull. Fac. Pharm. Cairo Univ. 54(2): 107-135 (2016).
- Ding Q., Chichak K. and Lown J.W. Pyrroloquinoline and Pyridoacridine Alkaloids from Marine. Curr. Med. Chem. 6(1): 1 (1999).
- Nukoolkarn V.S., Saen-oon S., Rungrotmongkol T., Hannongbua S., Ingkaninan K. and Suwanborirux K. Petrosamine, a potent anticholinesterase pyridoacridine alkaloid from a Thai marine sponge Petrosia n. sp. Bioorg. Med. Chem, 16(13): 6560-6567 (2008).
- Gil A.M., Gordillo D.A., Diaz I.D., Palomero E.G., De Luque C.D.A., Egea P.U. and Padilla M.M. Marine Compounds with Calcium Channel Blocking Properties for the Treatment of Cognitive or Neurodegenerative Diseases. Google Patents (2008).
- Tardent P. Coelenterata, cnidaria. Gustav Fischer. (1978).
- Rocha J., Peixe L., Gomes N. and Calado R. Cnidarians as a source of new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. Mar. Drugs. 9(10): 1860-1886 (2011).
- Rocha C. Bioactive compounds from Zoanthids (Cnidaria: Anthozoa): A brief review with emphasis on alkaloids. Int. Res. J. Biochem. Bioinform. 3: 1-6 (2013).
- Jiménez C. and Crews P. 13C-NMR assignments and cytotoxicity assessment of zoanthoxanthin alkaloids from zoanthid corals. J. Nat. Prod. 56(1): 9-14 (1993).
- Cen-Pacheco F., Norte M., Fernandez J.J. and Daranas A.H. Zoaramine, a zoanthamine-like alkaloid with a new skeleton. Org. Lett. 16(11): 2880-2883 (2014).
- D'Ambrosio M., Roussis V. and Fenical W. Zoamides AD: New marine zoanthoxanthin class alkaloids from an encrusting Philippine Parazoanthus sp. Tetrahedron Lett. 38(5): 717-720 (1997).
- Rozman K.B., Araoz R., Sepčić K., Molgo J. and Šuput D. Parazoanthoxanthin A blocks Torpedo nicotinic acetylcholine receptors. Chem. Biol. Interact. 187(1-3): 384-387 (2010).
- Karleskint G., Turner R. and Small J. Mar. Biol. Cengage Learning (2012).
- El-Hady F.K.A., Abdel-Aziz M.S., Shaker K.H., El-Shahid Z.A. and Ghani M.A. Coral-derived fungi inhibit acelylcholinesterase, superoxide anion radical and microbial activities. Int. J. Pharm. Sci. Rev. Res. 26(1): 301-308 (2014).
- El-Hady F.K.A., Shaker K.H., Souleman A.M., Fayad W., Abdel-Aziz M.S., Hamed A.A. and Tommonaro G. Enhancement of Acetylcholinesterase Inhibitory Activity for the Soft Coral Associated Fungus Aspergillus unguis SPMD-EGY by Media Composition. Curr. Microbiol. 74(11): 1294-1300 (2017).
- Bonnard I., Jhaumeer-Laulloo S.B., Bontemps N., Banaigs B. and Aknin M. New lobane and cembrane diterpenes from two comorian soft corals. Mar. Drugs. 8(2): 359-372 (2010).
- Dunlop R.W. and Wells R. J. Isolation of some novel diterpenes from a soft coral of the genus Lobophytum. Aust. J. Chem. 32(6): 1345-1351 (1979).
- Ata A., Ackerman J., Bayoud A. and Radhika P. Bioactive chemical constituents of Cladiella species. Helv. Chim. Acta. 87(3): 592-597 (2004).
- Radhika P., Chemical constituents and biological activities of the soft corals of genus Cladiella: A review. Biochem. Syst. Ecol. 34(11): 781-789 (2006).
- Edwards A.J. Red Sea. Elsevier. (2013).
- Gomaa M.N., Farag A.M., Ayesh A.M. and Embaby M.A. Isolation and structure elucidation of acetyl cholinesterase inhibitor from Gyrostoma helianthus of the Red Sea, Egypt. J. Cell Anim. Biol. 9(2): 16-25 (2015).
- Bouchet P., Rocroi J.P., Frýda J., Hausdorf B., Ponder W., Valdés Á. and Warén A. Classification and nomenclator of gastropod families. (2005).
- Kigoshi H., Kanematsu K., Yokota K. and Uemura D. Turbotoxins A and B, novel diiodotyramine derivatives from the Japanese gastropod Turbo marmorata. Tetrahedron. 56(46): 9063-9070 (2000).
- Stebbing A. Growth of Flustra foliacea (Bryozoa). Mar. Biol. 9(3): 267-273 (1971).
- Peters L., König G.M., Terlau H. and Wright A.D. Four new bromotryptamine derivatives from the marine bryozoan Flustra foliacea. J. Nat. Prod. 65(11): 1633-1637 (2002).
- Carlé J.S. and Christophersen C. Bromo-substituted physostigmine alkaloids from a marine bryozoa Flustra foliacea. J. Am. Chem. Soc. 101(14): 4012-4013 (1979).
- Adla S.K. Prenyl Rearrangements on Indole Alkaloids from the Marine Bryozoan Flustra foliacea: Synthesis of Flustramine A and Studies Towards ent-Flustramine C and Debromoflustramine E. PhD diss. (2013).
|
- Holst P.B., Anthoni U. Christophersen C. and Nielsen P. H. Marine alkaloids, Two alkaloids, flustramine E and debromoflustramine B, from the marine bryozoan Flustra foliacea. J. Nat. Prod. 57(7): 997-1000 (1994).
- Rivera-Becerril E., Joseph-Nathan P., Perez-Alvarez V.M. and Morales-Rios M.S. Synthesis and biological evaluation of (−)-and (+)-Debromoflustramine B and its analogues as selective butyrylcholinesterase inhibitors. J. Med. Chem. 51(17): 5271-5284 (2008).
- Watters D.J. and van Den Brenk A.L. Toxins from ascidians. Toxicon. 31(11): 1349-1372 (1993).
- Verbist J. Les ascidies, un exemple de l'intérêt des organismes marins comme sources de substance à activité pharmacologique. J. Pharm. Belg. 50(2-3): 98-120 (1995).
- Rinehart K.L. Antitumor compounds from tunicates. Med. Res. Rev. 20(1): 1-27 (2000).
- Li J.L., La Kim E., Wang H., Hong J., Shin S., Lee C.K. and Jung J.H. Epimeric methylsulfinyladenosine derivatives from the marine ascidian Herdmania momus. Bioorg. Med. Chem. Lett. 23(16): 4701-4704 (2013).
- Tadesse M., Svenson J., Sepčić K., Trembleau L., Engqvist M., Andersen J.H. and Haug T. Isolation and synthesis of pulmonarins A and B, acetylcholinesterase inhibitors from the colonial ascidian Synoicum pulmonaria. J. Nat. Prod. 77(2): 364-369 (2014).
- Tadokoro Y., Nishikawa T., Ichimori T., Matsunaga S., Fujita M.J. and Sakai R. N-methyl-β-carbolinium salts and an N-methylated 8-oxoisoguanine as acetylcholinesterase inhibitors from a solitary ascidian, Cnemidocarpa irene. ACS Omega. 2(3): 1074-1080 (2017).
- Selkoe D.J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81(2): 741-766 (2001).
- Farlow M.R. Pharmacokinetic profiles of current therapiesfor Alzheimer's disease: implications for switching to galantamine. Clin. Ther. 23: A13-A24 (2001).
- Fang Z., Jeong S.Y., Jung H.A., Choi J.S., Min B.S. and Woo M.H. Addition: Anticholinesterase and Antioxidant Constituents from Gloiopeltis furcata. Chem. Pharm. Bull. 58(11): 1554-1554 (2010).
- Nisha S.A. and Devi K.P. Gelidiella acerosa protects against Aβ 25–35-induced toxicity and memory impairment in Swiss Albino mice: an in vivo report. Pharm. Biol. 55(1): 1423-1435 (2017).