Document Type : Original Paper

Authors

1 Department of Entomology, Arak Branch, Islamic Azad University, Arak, Islamic Republic of Iran

2 Department of Pesticides, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Islamic Republic of Iran

Abstract

Pesticides play an important role in increasing food production by pest control. Most pesticides are less soluble in the aqueous media and need organic solvents for desirable efficacy, causing environmental pollutions. Nanopesticides overcome the problems associated with native pesticides through reduction in the quantity of pesticide and controlling the risks for human and environmental health. In this research, chlorpyrifos (CPS) was loaded in Ag/PEG/Cs nanoparticles (Ag/PEG/Cs/CPS NPs) and then evaluated as a nanopesticide against Microcerotermes diversus Silvestri (Isoptera: Termitidae). The target nanopesticide was characterized by XRD, UV-VIS, FT-IR, and TEM. The results revealed that the NPs were spherical with the medium-sized of 11 nm. The biological activity of the NPs was also estimated in vitro against Microcerotermes diversus. The results confirmed the effectiveness of the nanopesticide at concentrations of 0.05 µl/l (5 ppm) after 48 h against termites and also at a lower concentration of 0.005 µl/l (50 ppm) after 72 h. The nanopesticid could be considered as a promising alternative to the conventional harmful pesticides for controlling termites.

Keywords

   1.       Kah M, Beulke S, Tiede K, Hofmann T. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol.2013;43: 1823-1867.
   2.       Yang D, Cui B, Wang C, Zhao X, Zeng Z, Wang Y, et al. Preparation and Characterization of Emamactin Benzoate Solid Nanodispersion. J. Nanomater. 2017; 1-9.
   3.       Sephiroth K, Kuakoon P, Kunruedee S, Oates C. Paper presented at X International Starch Convention, Cracow, Poland, 2002; pp. 2–14.
   4.       Zeng H, Li XF, Zhang GY, Dong JF. Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. J. Dispersion Sci. Technol. 2008;29: 358-361.
   5.       Fan P, Gu ZY, Xu DJ, Xu XL, Xu GC. Action analysis of drops of emamection-benzoate microemulsion on rice leaf. Zhongguo Shuidao Kexue. 2010;24: 503-508.
   6.       Salma U, Chen N, Richter DL, Filson PB, Dawson-Andoh B, atuana ML, et al. Amphiphilic core/shell nanoparticles to reduce biocide leaching from treated wood. 1. Leaching and b iological efficacy. Macro. Mater. Eng. 2010;295: 442-450.
   7.       Bin Hussein MZ, Zainal Z, Yahaya AH, Foo DWV. Controlled release of a plant growth regulator, alpha-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite. J. Controlled Release. 2002;82: 417-427.
   8.       Park M, Lee CI, Seo YJ, Woo SR, Shin D, Choi J. Hybridization of the natural antibiotic, cinnamic acid, with layered double hydroxides (LDH) as green pesticide.  Environmental Science and Pollution Research. 2010;17: 203-209.
   9.       Derakhsh Ahmadi V, Alizadeh BH. Nanopesticides: Synthesis and Application of Nanosphare Structures. Bulletin de la Société Royale des Sciences de Liège. 2017; 86: 845–854.
 10.      Gonzalez JOW, Gutiérrez MM, Ferrero AA, Band BF. Essential oils nanoformulations for stored-product pest control–Characterization and biological properties. Chemosphere. 2014;100: 130-138.
 11. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2014;113: 2363-2373.
 12.      Baohua Z. Optimization of encapsulation conditions of chlorpyrifos microcapsules. Int. J. Environ. Sci. Technol. 2013;5: 1244-1248.
 13.      Wakeil N.E., Alkahtani S., Gaafar N. New Pesticides and Soil Sensors, Is nanotechnology a promising field for insect pest control in IPM programs? New Pesticides and Soil Sensors, New Pesticides and Soil Sensors. http://dx.doi.org/10.1016/B978-0-12-804299-1.00008. Elsevier Inc 2017; pp.273-309.
 14.      Budnyak TM, Pylypchuk IV, Tertykh VA, Yanovska ES, Kolodynska D. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Res. Lett. 2015;87: 1-10.
 15.      Cheng MH, Huang YX, Zhou HJ, Liu Z, Li JF. Rapid preparation and characterization of chitosan nanoparticles for oligonucleotide. Curr. Appl. Phys. 2010;10: 797-800.
 16.      Kim DG, Jeong YI, Choi C, Roh SH, Kang SK, Jang MK, Na JW. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 2006;319: 130-138.
 17.      Navaladian S, Viswanathan B, Viswanath RP, Varadarajan TK. Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett. 2007;2: 44.
 18.      Tomlin CDS. A world Compendium, Twelfth edition, The pesticide manual, British Crop Protection Council. (2004).
 19.      Zahoor A, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis, Int. J. Antimicrob. Agents. 2005;26: 298–303.
 20.      Anitha A, Maya S, Deepa N, Chennazhi K, Nair S, Tamura H, et al. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr. Polym. 2011;83: 452-461.
 21.      Prasad R, Damayanthi E, Saranya J. Formulation and Evaluation of Azathioprine Loaded Silver Nanopartilces for The Treatment of Rheumatoid Arthritis. Asian Journal of Biomedical and Pharmaceutical Sciences. 2013;3: 28-32.
 22.      Kanikireddy V, Yallapu M, Varaprasad K, Nagireddy N, Sakey R, Naidu N, et al. Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity. J. Biomater. Nanobiotechnol. 2011;2: 55-64.
 23. Mohan YM, Lee KJ, Premkumar T. Geckeler K.E. Hydrogel networks as nanoreactors: A novel approach to silver nanoparticles for antibacterial applications. Polymer. 2007;48: 158-164.
 24.      Feng X, Qi X, Li J, Yang LW, Qiu MC, Yin JJ, et al. Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays. Appl. Surf. Sci. 2011;257: 5571-5575.
 25.      Hayward RC, Saville DA, Aksay IA. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature. 2000;404: 56-59.
 26. Cao XL, Cheng C, Ma YL, Zhao CS. Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J. Mater. Sci. Mater. Med.  2010;21: 2861-2868.
 27. Huang HZ, Yuan Q, and Yang XR. Preparation and characterization of metal-chitosan nanocomposites. Colloids Surf. B. 2004;39: 31-37.
 28.      Raveendran P, Fu J, Wallen SL. Completely "green" synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 2003;125: 13940-13941.
 29. Shameli K, Ahmad M, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, et al. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity.  Int. J. Nanomed. 2010;5: 875-887.
 30.      Wei D Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 2009;23: 2375-2382.
 31.      Zhu M, Zhu Y, Zhang L, Shi J. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs.  Sci. Technol. Adv. Mater. 2013;14: 045005.
 32.      Wei D, Sun W, Qian W, Ye Y, MaDongwei Wei X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydrate Research, 2009;344: 2375-2382.
 33.      Illum L. Review Chitosan and its use as a pharmaceutical excipient.
 34.      Pharmaceutical Research. 1998;15: 1326-1331.
 35.      Sun SH, Fullerton EE, Weller D, Murray CB. Compositionally controlled Fe Pt nanoparticle materials. IEEE Trans. Magn. 2001;37: 1239-1243.
 36.      Pimpang P, Sutham W, Mangkorntong N, Mangkorntong P, Choopun S. Effect of Stabilizer on Preparation of Silver and Gold Nanoparticle Using Grinding Method.  Chiang Mai Journal of Science. 2008;35: 250-257.
 37.      Akbari B, Pirhadi T, Zandrahimi M. Particle size characterization of nanoparticles- a practical approach. Iranian Journal of Materials Science and Engineering. 2011;8: 48-56.
 38. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009,145: 83-96.
 39. Shameli  K, Ahmad M, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, et al. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Int. J. Nanomedicine 2011;6: 271-284.
 40.      Hamedi S, Masumeh S, Shojaosadati S, Soheila S. Comparative study on silver nanoparticles properties by Green Methods. Iran. J. Biotechnol. 2012;10: 191-197. 
 41.      Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, et al. Synthesis and characterization of silver/montmorillonite/chitosan biocomposite by chemical Reduction method and their antibacterial activity. Int J Nanomedicine. 2011;6: 271-284.
 42.     
 
Barron MK, Timothy J, Young TJ, Keith P, Johnston KP, Williams R.O. Investigation of processing parameters of spray freezing into liquid to prepare polyethylene glycol polymeric particles for drug delivery. AAPS Pharm. Sci. Tech. 2003;4:1-13.
 43.      Abdeen Z, Mohammad SG, and Mahmoud MS. Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environmental Nanotechnology, Monitoring & Management, 2015;3: 1-9. 
 44.      Tijani AA, Oshotimehin KO. Economics of pesticides use among maize farmers in edo state, Nigeria. Res. J. Agric. Biol. Sci. 2007;3: 129-132.
 45. Ihegwuagu NE, Sha'Ato R, Tor-Anyiin TA, Nnamonu LA, Buekes P, Soneab B, et al. Facile formulation of starch-silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New Journal of Chemistry. 2016;40: 1777-1784.
 46.      Wibowo D, Zhao CX, Peters BC, Middelberg APJ. Sustained Release of Fipronil Insecticidein Vitro andin Vivo from Biocompatible Silica Nanocapsules. J. Agric. Food Chem. 2014;62: 12504.
 47.      Subekti N, Nur H, Fanidya A, Susanti S, Saputri R, Indrawati P. Chlorpyrifos organophosphate and essential oils activities against Callosobruchus maculatus (F.) warehouse pests. J. Phys.: Conf. Ser. 2019;1402: 055024.
 48.      Abdel-Tawab, Mossa ATH. Green Pesticides: Essential Oils as Biopesticides in Insect-pest Management. International Journal of Environmental Science and Technology. 2016;9: 354-378.
 49.      Ahmed S, Naseer A, Fiaz, S. Comparative efficacy of botanicals and insecticides on termites in sugarcane at Faisalabad. Pakistan entomologist. 2005;27: 23-25.
 50.      Borges CC, Tonoli GHD, Cruz TM, Duarte PJ, Junqueira TA. Nanoparticles-based wood preservatives: the next generation of wood protection. CERNE, 2018;24: 397-407.