Document Type : Original Paper


1 Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran

2 Department of Physics, Malayer University, Malayer, Iran.

3 Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran

4 Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Islamic Republic of Iran


The present study aimed to prepare Fe3O4 nanocarriers (NCs) by a thermal treatment method. After the Fe3O4 (Fe) NCs was prepared, zinc oxide and silica nanoparticles were added to it as Photosensitizer. The structure, morphology, and magnetic properties of Fe3O4@ZnO (Fe@Zn) and Fe3O4@SiO2 (Fe@Si) NCs were determined by XRD, FT-IR, FESEM, and VSM. Then, the loading and drug release of Fe, Fe@Zn, and Fe@Si NCs were investigated. The curcumin (CUR) release of Fe@Zn+CUR and Fe@Si+CUR increased from 30% and 26% at pH 7.4 to 53% and 57% at pH 5.5, respectively. The cytotoxicity of Fe@Zn and Fe@Si NCs were determined by MTT assay, hemolysis test, acute toxicity, and lethal dose test. The results showed that Fe@Zn and Fe@Si were appropriate for Photodynamic Therapy (PDT) and in the next step, the effect of Fe@Zn, Fe@Si, Fe@Zn+CUR, and Fe@Si+CUR NCs on MCF-7 cells under  visible light were studied. Finally, the ranking of the destruction of cancerous cells of MCF-7 using NCs under  visible light was: Fe@Zn+CUR>Fe@Zn>Fe@Si+CUR>Fe@Si.


  1. Lee N., D. Yoo, Ling D., Cho M.H., Hyeon T., Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. J. Chem Rev. 115:10637-89 (2015).
  2. Wei W., Zhaohui W., Taekyung Y., Changzhong J., Woo-Sik K. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. J. Sci Technol Adv Mater. 16:023501 (2015).
  3. Masoudi R. , Moghimi H., Azin E., Taheri A. Adsorption of cadmium from aqueous solutions by novel Fe3O4-newly isolated Actinomucor sp. bio-nanoadsorbent: functional group study,Artificial Cells. J.Artificial Cells Nanom and Biot. 46:1092-1101 (2018).
  4. Gupta R., Sharma D. Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy. J. ACS Chem. Neurosci. 10: 1157–1172 (2019).
  5. Beg M. Sh., Mohapatra J., Pradhan L., Patkar D., Bahadur D. Porous Fe3O4-SiO2 Core-Shell Nanorods as High-Performance MRI Contrast Agent and Drug Delivery Vehicle. J. Mag and Mag Mat. 428: 340-347 (2017).
  6. Kossatz S., Grandke J., Couleaud P., et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. J. Bre Cancer Res. 17:66 (2015).
  7. Aghajanzadeh M., Naderi E.,  Zamani M., Sharafi  A., Naseri Danafar H. . In vivo and In vitro Biocompatibility Study of MnFe2O4 and Cr2Fe6O12 as Photosensitizer for Photodynamic Therapy and Drug Delivery of Anti-Cancer Drugs.  J. Drug Dev and Indus Phar. 29:1-6 (2020).
  8. McFarland Sh. A., Mandel A., Dumoulin-White R., Gasser G. Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology? J. Cur Opin in Chem Bio. 56:23-27 (2020).
  9. FanY.  Zhou T.  Cui  P. F.,  He .J,  Chang. Xin,   Xing L.,    Jiang H. Modulation of Intracellular Oxygen Pressure by Dual‐Drug Nanoparticles to Enhance Photodynamic Therapy. J. Adv Func Mater. 29:1806708 (2019).
  10. Li Sh.,  Shen X.,  Xu Q.,  Cao Y. Gold nanorod enhanced conjugated  polymer /photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. J. Nanoscale. 11: 19551-19560 (2019).
  11. Kazantzis K.T.,   Koutsonikoli K.,   Mavroidi B.,  Zachariadis M.,   Alexiou P., Pelecanou M.,  Politopoulos K., Alexandratou E.,  Sagnou M. Curcumin derivatives as photosensitizers in photodynamic therapy: photophysical properties and in vitro studies with prostate cancer cells. J. Photochem & Photobio Sci. 19:193-206 (2020).
  12. Anselmo A. C., Mitragotri S. Impact of particle elasticity on particle-based drug delivery systems. J. Advan drug deliv rev. 108: 51-67 (2017).
  13. Torchilin V. P. stimuli-sensitive nanoparticulate systems for drug delivery. J. Natu rev Drug dis. 13: 813 (2014).
  14. Colilla M., Baeza A., Vallet, Regí M. Mesoporous silica nanoparticles for drug delivery and controlled release applications. The SolGel Handbook. 1309-1344 (2015).
  15. Cheung K., Das D. B. Microneedles for drug delivery: trends and progress. Drug deliv. 23:2338-2354 (2016).
  16. Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Natu biotec . 33:941 (2015).
  17. Zamani M., Naderi E., Aghajanzadeh M., et al. Co1− XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: Synthesis, characterization and in vivo and in vitro biocompatibility study. J. Mole Liqu . 274: 60-67 (2019)
  18. Hosseini S. M., Monfared H. H., Abbasi V., Khoshroo M.  R.,   Nanostructural Characterization of the Fe3O4/ZnO Magnetic Nanocomposite as an Application in Medicine J . Super and Nov Mag. 30:  3541-3548 (2017).
  19. Naderi E., Naseri M.and Souri D.. The effect of SiO2 and TiO2 nanoparticles on physical properties of SrFe12O19 nanoparticle. Current App Phy. 18: 469-476 (2018).
  20. Naseri M., Naderi E., Sadrolhosseini A. R. Effect of Phase Transformation on Physical and Biological Properties of PVA/CaFe2O4 Nanocomposite. J. Fib and Poly. 17: 1667-1674 (2016).
  21. Chireh M., Naseri M. Effect of calcination temperature on the physical properties of LiFe5O8 nanostructures. J. Adv  Pow Tech. 30: 952-96022 (2019).
  22. Naseri M., Ghasemi R. Structure and physical properties of Fe6 O8/ba Fe6 O11 nanostructure. Mag and Mag Mat. 406:200–206 (2016).
  23. Zamani M., Rostami M., Aghajanzadeh M., Kheiri Manjili H., Rostamizadeh K., and Danafar H.. Abdelsalam. Mesoporous titanium dioxide@zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. Mat Science. 53: 1634–1645 (2018).
  24. Shen L., Li B., Qiao Y., and Song J. Monodisperse Fe3O4/SiO2 and Fe3O4/SiO2/PPy Core-Shell Composite Nanospheres for IBU Loading and Release. Materials. 12: 823 (2019).


  1. Qiu H., Cui B., Li G., Yang J., Peng H., Wang Y., Li N., Gao R., Chang Zh., Novel Fe3O4@ZnO@mSiO2 Nanocarrier for Targeted Drug Delivery and Controllable Release with Microwave Irradiation. J. Phy Chem C. 118: 14929-14937 (2014).
  2. Katsumiti A., Arostegui I. , Oron M. , Gillil D., Valsami-Jones E., Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: Relevance of size, shape and additives. J. Nanotoxicology. 10:185-93 (2016).
  3. Suresh D.,Kumbar, Sagar M.,  Menon, Samvit G., Choudhari K. S., Santhosh C. Novel Magnetically Separable Fe3O4@ZnO Core–Shell Nanocomposite for UV and Visible Light Photocatalysis. J. Adv Sci Lett. 23:1724-1729 (2017).
  4. Mortazavi-DerazkolaS., Salavati-Niasar M. , Amiri O., Abbasi A.  Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Ene Chem. 26: 17-23 (2017).
  5. Zhu H., Li J., Qi X., Chen P. Orcid Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic. J. Therapy Nano Lett. 18: 1586-594 (2018).
  6. Naderi E., Aghajanzadeh M., Zamani M., Hashiri A., Sharafi A., Kamalianfard A., Naseri M, Danafare H. Improving the anti-cancer activity of quercetin-loaded AgFeO2through UV irradiation: Synthesis, characterization, and in vivo and in vitro biocompatibility study. J. Drug Del Sci and Tech. 57: 101645 (2020).