Document Type : Original Paper


1 1 Department of Geology, Faculty of sciences, Shahid Bahonar university of Kerman, Kerman, Islamic Republic of Iran

2 2 Department of Geology, College of Sciences, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran

3 3 Department of Earth and Environmental Sciences, Yamagata University, Yamagata, Japan


The mantle peridotites of the Hadji-Abad ultramafic complex in Hormozgan province, show some petrological evolutions of the upper mantle of southern Iran. The complex includes harzburgite, lherzolite, dunite and chromitite. Evidences such as different generations of minerals, lobate boundaries between grains, elongation of cr-spinels and pyroxenes, incongruent melting related textures and exsolution lamellae of clinopyroxene in orthopyroxene show that the rocks in this peridotites have past a complex petrological history. The chemical composition of chromites in the Hadji Abad dunites and chromitites is similar to that of boninite melts, while, the mineral chemistry of the harzburgitic and lherzolitic show that the host peridotites belong to the upper mantle and have been depleted from incompatible elements due to 15 to 20 percent partial melting. Geo-thermometric calculations reveal that the studied peridotites equilibriated in upper mantle and spinel-peridotite stability field. Using tectonomagmatic discrimination diagrams shows that the Hadji-Abad ultramafic complex is part of an oceanic lithosphere above suprasubduction zone which has undegone partial melting, high temperature deformations and mantle metasomatism processes associated with this environment. These evidences along with the geological and tectonic setting of the Hadji Abad complex adjacent to the Zagros thrust indicate that the complex probably was created in a suprasubduction zone oceanic mantle section and then tectonically emplaced as part of Esfandagheh-Hadji-Abad mélange in the current situation during the upper Cretaceous. This information confirm the dependence of the Esfandagheh-Hadji-Abad ophiolite mélange on the Neotethyan oceanic lithosphere in southern Iran.


  1. Rollinson H. Dunites in the mantle section of the Oman ophiolite – The boninite connection, Lithos, 334-335: 1-7 (2019).
  2. Uysal I., Kaliwoda M., Karsli O., Tarkian M., Sadiklar M.B., Ottley C.J. Compositional variations as a result of partial melting and malt-peridotite interaction in an Upper mantle section from the Ortaca area, Southwestern Turkey, Mineral. 45: 1471-1493 (2007).
  3. Gonzelez-Jimenez J.M., Proenza J.A., Camprubi A., Centeno-Garcia E., Gonzalez-Partida E.,Griffin W.L., O’Reilly S.Y., Pearson N.J. Chromite deposits at Loma Baya: petrogenesis and clues for the origin of the coastal Guerrero Composite Terrane in Mexico, 11th Biennial meeting SGA, Chile, (2011).
  4. Abdel Halim A. H., Helmy H. M., Elhaddad M.A., El-Mahallawi M. M., Mogessie A. Petrology of a Neoproterozoic mantle peridotite–chromitite association from Abu Dahr area, Eastern Desert, Egypt: Infiltration of a boninitic melt in highly depleted harzburgite, Afr. Earth Sci. 165: Article ID 103816 (2020).
  5. Su B.X., Chen C., Pang K., Sakyi P. A., U. I., Avci E., Liu X., Zhang P. Melt Penetration in Oceanic Lithosphere: Li Isotope Records from the Pozantı-Karsantı Ophiolite in Southern Turkey, Petrol. 59(1): 91–205 (2018).
  6. Ghasemi H., Juteau T., Bellon H., Sabzehei M., Witechurch H., Ricou L.M. The mafic–ultramafic complex of Sikhoran (central Iran): a polygenetic ophiolitic complex, Geoscience, 334, 431–438 (2002).
  7. Ahmadipour H., Sabzehei M., Whitechurch H., Rastad E., and Emami M.H. Soghan complex as an evidence for paleospreading center and mantle diapirism in sananandaj-sirjan zone (South-East Iran), Sci.I.R. of Iran, 14(2): 157-172 (2003).
  8. Najafzadeh A.R., Ahmadipour H. Using platinum-group elements and Au geochemistry to constrain the genesis of podiformchromitites and associated peridotites from the Soghan mafic–ultramafic complex, Kerman, southeastern Iran, Ore Geol. Rev. 60: 60–75 (2014).
  9. Peighambari S., Ahmadipour H., Stosch H.G., Daliran F. Evidence for multi-stage mantle metasomatism at the Dehsheikh peridotite mass if and chromite deposits of the Orzuieh coloured mélange belt, southeastern Iran, Ore Geol. Rev. 39: 245-264 (2011).
  10. Mohammadi M. Geochemistry, petrogenesis and economic evaluation of AbBid ultramafic complex, East of Hadji Abad (Hormozgan province). [Ph.D. Thesis]. Shahid Bahonar university of Kerman, (Iran) (2017). (in persian)
  11. Ghazi A.M., Pessagno E.A., Hassanipak A.A., Kariminia S.A., Duncan R.A., Babaie H. A. Biostratighraphic zonation and 40Ar/30Ar ages for the Neotethyan Khoy ophiolite of NW Iran, Palaeoclimatol. Palaeoecol. 193: 311-323 (2003).
  12. Shafaii Moghadam H., & Stern R. J. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia:(II) Mesozoic ophiolites, Asian Earth Sci. 100: 31-59 (2015).
  13. Shafaii Moghadam H., Stern R. J., Chiaradia M. Geochemistry and tectonic evolution of the Late Cretaceous Gogher- Baft ophiolite, central Iran, Lithos 168-169: 33-47 (2013).
  14. McCall G.J.H. Explanatory text of the Minab Quadrangle Map; 1:250,000; No. J13, Geological Survey of Iran, Tehran, 530 (1985).
  15. Shahabpour J. Tectonic evolution of the orogenic belt in the region located between Kerman and neyriz, Asian Earth Sci. 24: 405–417 (2005).
  16. Sahandi M.R., Azizian H., Nazemzade M., Navazi M., Atapour H. 1/100000 level Orzueiyeh Geological map, Geological Survey & Mineral exploration of Iran, Series, No. 7346 (2007).
  17. Bonavia F.F., Diella V., and Ferrario A. Precambrian podiformchromitites from KentichaHill, southem Ethiopia, Geol. 88: 198-202 (1993).
  18. Kepezhinskas P. K., Defant M. J., Drummond M .S. Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the North Kamchatka arc, Petrol. 36, 1505–1527 (1995).
  19. Takahashi E. Melting of a dry peridotite KLB I up to 14 GPa: implications on the origin of the peridotitic upper mantle, Geophys. Res. 91: 9367-9382 (1986).
  20. Ozawa K. Melting and melt segregation in the mantle wedge above a subduction zone: evidence from the chromite-bearing peridotites of the Miyamori Ophiolite Complex, northeastern Japan, Petrol. 35: 647 –678 (1994).
  21. Page P., Bedard J.H., Schroetter J.M., Tremblay A. Mantle Petrology and Mineralogy of the Thetford Mines ophiolite complex, Lithos, 100: 255-292 (2008).
  22. Poldervaart A., and Hess H.H. Pyroxenes in the Crystallization of Basaltic Magma, Geol. 59(5): 472-489 (1951).
  23. Medaris L.G. High-pressure peridotites in south-western Oregon, Soc. Am. Bull. 83: 41– 58 (1972).
  24. Gaetani G.A., Grove T.L. The influence of water on melting of mantle peridotite, Mineral. Petrol. 131: 323-346 (1998).
  25. Hirose K., Kawamoto T. Hydrous partial melting of lherzolite at 1GPa: the effect of H2O on the genesis of basaltic magmas, Planet. Sci. Lett. 133: 463–473 (1995).
  26. Dick H.J.B., Bullen T. Chrome spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas, Mineral. Petrol. 86: 54–76 (1984).
  27. Pearce J.A., Barker P.F., Edwards S.J., Parkinson I.J., Leat P.T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic, Mineral. Petrol. 139: 36–53 (2000).
  28. Zhou M.F. PGE distribution in 27-Ga layered komatiite flows from the Belingwe greenstone belt, Zimbabwe, Geol. 118: 155-172 (1994).
  29. Arai S. Chemistry of Chromian spinel in volcanic rocks as a potential guide to magma chemistry, Mag. 56: 173-184 (1992).
  30. Nimis P., Taylor W. R. Single clinopyroxene thermometry for garnet peridotites, Calibration and testing of a Cr-in-cpx barometer and enstatite-in-cpx thermometer, Mineral. Petrol. 139: 541-554 (2000).
  31. Brey G.p., Kohler T. Geothermobarometry in four-phase lherzolites. Part ll: New thermobarometers and practical assessment of existing thermobarometers, Petrol. 31: 1353-1378 (1990).
  32. Wells P.R.A. Pyroxene thermometry in simple and complex systems, Mineral. Petrol. 62: 129-139 (1977).
  33. Ionov D. A., Liu Z., Li J., Golovin A.V., Korsakov A.V., Xu Y. The age and origin of cratonic lithospheric mantle: Archean dunites vs. Paleoproterozoic harzburgites from the Udachnaya kimberlite, Siberian craton, Cosmochim. Acta, 281: 67-90 (2020).
  34. Paulick H., Bach W., Godard M., De Hoog J.C.M., Suhr G., Harvey J. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments, Geol. 234: 179–210 (2006).
  35. Arai S. Characterization of spinel peridotites by olivine-spinel compositional relationship: review and interpretation, Geol. 113: 191–204 (1994).
  36. Jiang J., Zhu Y., Harzburgite found in the Hegenshan ophiolite, southeastern Central Asian Orogenic Belt: Petrogenesis and geological implications, Gondwana Res. 75: 28-46 (2019)
  37. Pearce J.A., Norry M.J. Petrogenetic Implications Of Ti, Zr, Y And Nb Variations In Volcanic Rocks, Mineral. Petrol. 69: 33-47 (1979).
  38. Parlak O., Hock V., Delaloye M. Suprasubduction zone origin ofthe Pozanti–Karsanti ophiolite (southern Turkey) deduced from wholerockand mineral chemistry of the gabbroic cumulates, In: Tectonicsand Magmatism in Turkey and the Surrounding Area, Bozkurt, E.,Winchester, J.A., Piper, J.D.A. (eds.), Soc. Spec. Publ. 173: 219–234 (2002).
  39. Vergili O., Parlak O. Geochemistry and tectonic setting of metamorphic sole rocks and mafic dikes from the Pınarbaşı (Kayseri) ophiolite, Central Anatolia, Ofioliti, 30: 37–52 (2005).
  40. Rızaoğlu T., Parlak O., Hock V., İşler F. Nature and  significance of Late Cretaceous ophiolitic rocks ands its  relation to the Baskil granitoid in Elazığ region, SE Turkey. In: Robertson, A.H.F. & Mountrakis, D. (eds), Tectonic Development of the Eastern Mediterranean, Soc. Spec. Publ.  260: 327–350 (2006).
  41. Dilek Y. and Thy P. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kızıldağ (Turkey) ophiolite: model for multistage  early arc–forearc magmatism in Tethyan subduction factories, Lithos 113: 68–87 (2009).
  42. Stöcklin J. Structural correlation of the Alpine range between Iran and Central Asia. Memoire Hors-Serie no.8, de la Societe Geologique de la France, 8: 333-353 (1977).
  43. Rajabzadeh M.A., Dehkordi T.N. Investigation on mantle peridotites from Neyriz ophiolite, south of Iran: geodynamic signals, J. Geosci. 6(11): 4445-4461 (2013).
  44. Shafaii Moghadam H., Whitechurch H., Rahgoshay M. and Monsef I. Significance of Nain - Baft ophiolitic belt (Iran): Short - lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone, R. Geosci. 341: 1016-1028 (2009).
  45. Ahmadipour A., Shahabpour J. Petrological evoloution of the upper mantle beneath the southern Sanandaj-Sirjan zone: Evidence from Kushah peridotite massif, Southeast Iran, Sci.I.R. of Iran, 25(1), 35-49 (2014).


  • Mercier J.C.C., Nicolas A. Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts, Petrol. 16: 454–487 (1975).
  1. Kamenetsky V.S, Crawford A.J, Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks, Petrol. 42: 655–671 (2001).
  2. Ishii T., Robinson P.T., Maekawa H., Fiske R. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana Forearc, Leg 125. In: Fryer, P; Pearce, JA; Stokking, LB; et al. (eds.),  ODP, Sci. Results, 125: 445-485 (1992).