1. Ishizuka M, Abe F, Sano Y, Takahashi K, Inoue K, Nakajima M, et al. Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. International Immunopharmacology. 2011;11(3):358-65.
2. Rodriguez BL, Curb JD, Davis J, Shintani T, Perez MH, Apau‐Ludlum N, et al. Use of the dietary supplement 5‐aminiolevulinic acid (5‐ALA) and its relationship with glucose levels and hemoglobin A1C among individuals with prediabetes. Clinical and translational science. 2012;5(4):314-20.
3. Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nature reviews Molecular cell biology. 2009;10(3):218-27.
4. Burke MA, Ardehali H. Mitochondrial ATP–binding cassette proteins. Translational research. 2007;150(2):73-80.
5. Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J, Mercer KE, et al. Identification of a mammalian mitochondrial porphyrin transporter. Nature. 2006;443(7111):586-9.
6. Filbeck T, Pichlmeier U, Knuechel R, Wieland W, Roessler W. Do patients profit from 5-aminolevulinic acid-induced fluorescence diagnosis in transurethral resection of bladder carcinoma? Urology. 2002;60(6):1025-8.
7. Krieg RC, Messmann H, Rauch J, Seeger S, Knuechel R. Metabolic Characterization of Tumor Cell–specific Protoporphyrin IX Accumulation After Exposure to 5‐Aminolevulinic Acid in Human Colonic Cells¶. Photochemistry and photobiology. 2002;76(5):518-25.
8. Goldenberg MM. Pharmaceutical approval update. Pharmacy and Therapeutics. 2013;38(7):389.
9. Kitajima Y, Ishii T, Kohda T, Ishizuka M, Yamazaki K, Nishimura Y, et al. Mechanistic study of PpIX accumulation using the JFCR39 cell panel revealed a role for dynamin 2-mediated exocytosis. Scientific reports. 2019;9(1):1-11.
10. Hamdi A, Schranzhofer M, Lok NC, Garcia-Santos D, Ponka P. Transcriptional regulation of transferrin receptor by heme in erythroid cells. Experimental Hematology. 2014;42(8):S37.
11. Ward J, Jordan I, Kushner J, Kaplan J. Heme regulation of HeLa cell transferrin receptor number. Journal of Biological Chemistry. 1984;259(21):13235-40.
12. Cho HR, Kim DH, Kim D, Doble P, Bishop D, Hare D, et al. Malignant glioma: MR imaging by using 5-aminolevulinic acid in an animal model. Radiology. 2014;272(3):720-30.
13. Mortezazadeh T, Gholibegloo E, Khoobi M, Alam NR, Haghgoo S, Mesbahi A. In vitro and in vivo characteristics of doxorubicin-loaded cyclodextrine-based polyester modified gadolinium oxide nanoparticles: a versatile targeted theranostic system for tumour chemotherapy and molecular resonance imaging. Journal of drug targeting. 2020;28(5):533-46.
14. Mortezazadeh T, Gholibegloo E, Riyahi Alam N, Haghgoo S, Musa A, Khoobi M. Glucosamine conjugated gadolinium (III) oxide nanoparticles as a novel targeted contrast agent for cancer diagnosis in MRI. Journal of Biomedical Physics & Engineering. 2020;10(1):25.
15. Dehghani S, Hosseini M, Haghgoo S, Changizi V, Akbari Javar H, Khoobi M, et al. Multifunctional MIL-Cur@ FC as a theranostic agent for magnetic resonance imaging and targeting drug delivery: in vitro and in vivo study. Journal of Drug Targeting. 2020:1-13.
16. Molaei H, Zaaeri F, Sharifi S, Ramazani A, Safaei S, Abdolmohammadi J, et al. Polyethylenimine-graft-poly (maleic anhydride-alt-1-octadecene) coated Fe3O4 magnetic nanoparticles: promising targeted pH-sensitive system for curcumin delivery and MR imaging. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020:1-10.
17. Gholibegloo E, Mortezazadeh T, Salehian F, Forootanfar H, Firoozpour L, Foroumadi A, et al. Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. Journal of colloid and interface science. 2019;556:128-39.
18. Ebrahimpour A, Alam NR, Abdolmaleki P, Hajipour-Verdom B, Tirgar F, Ebrahimi T, et al. Magnetic Metal–Organic Framework Based on Zinc and 5-Aminolevulinic Acid: MR Imaging and Brain Tumor Therapy. Journal of Inorganic and Organometallic Polymers and Materials. 2020:1-9.
19. Hou J, Cai S, Kitajima Y, Fujino M, Ito H, Takahashi K, et al. 5-Aminolevulinic acid combined with ferrous iron induces carbon monoxide generation in mouse kidneys and protects from renal ischemia-reperfusion injury. American Journal of Physiology-Renal Physiology. 2013;305(8):F1149-F57.
20. Kafina MD, Paw BH. Intracellular iron and heme trafficking and metabolism in developing erythroblasts. Metallomics. 2017;9(9):1193-203.
21. Nishio Y, Fujino M, Zhao M, Ishii T, Ishizuka M, Ito H, et al. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1. International immunopharmacology. 2014;19(2):300-7.
22. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochemical Journal. 2011;434(3):365-81.
23. Fujiwara T, Okamoto K, Niikuni R, Takahashi K, Okitsu Y, Fukuhara N, et al. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia. Biochemical and biophysical research communications. 2014;454(1):102-8.
24. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Molecular and cellular biology. 2009;29(4):1007-16.
25. Yoon T, Cowan J. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. Journal of Biological Chemistry. 2004;279(25):25943-6.
26. Severance S, Hamza I. Trafficking of heme and porphyrins in metazoa. Chemical reviews. 2009;109(10):4596-616.
27. Kühn LC, Hentze MW. Coordmation of cellular iron metabolism by post-transcriptional gene regulation. Journal of inorganic biochemistry. 1992;47(1):183-95.
28. Tran TT, Mu A, Adachi Y, Adachi Y, Taketani S. Neurotransmitter Transporter Family Including SLC 6 A 6 and SLC 6 A 13 Contributes to the 5‐Aminolevulinic Acid (ALA)‐Induced Accumulation of Protoporphyrin IX and Photodamage, through Uptake of ALA by Cancerous Cells. Photochemistry and photobiology. 2014;90(5):1136-43.
29. Döring F, Walter J, Will J, Föcking M, Boll M, Amasheh S, et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. The Journal of clinical investigation. 1998;101(12):2761-7.
30. Frølund S, Marquez OC, Larsen M, Brodin B, Nielsen CU. δ‐Aminolevulinic acid is a substrate for the amino acid transporter SLC36A1 (hPAT1). British journal of pharmacology. 2010;159(6):1339-53.
31. Müller-Decker K, Leder C, Neumann M, Neufang G, Marks F, Fürstenberger G, et al. Expression of cyclooxygenase isozymes during morphogenesis and cycling of pelage hair follicles in mouse skin: precocious onset of the first catagen phase and alopecia upon cyclooxygenase-2 overexpression. Journal of investigative dermatology. 2003;121(4):661-8.
32. Ohgari Y, Nakayasu Y, Kitajima S, Sawamoto M, Mori H, Shimokawa O, et al. Mechanisms involved in δ-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: Relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochemical pharmacology. 2005;71(1-2):42-9.
33. Rud E, Gederaas O, Høgset A, Berg K. 5‐aminolevulinic acid, but not 5‐aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters. Photochemistry and photobiology. 2000;71(5):640-7.
34. Hagiya Y, Endo Y, Yonemura Y, Takahashi K, Ishizuka M, Abe F, et al. Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro. Photodiagnosis and Photodynamic Therapy. 2012;9(3):204-14.
35. Hagiya Y, Fukuhara H, Matsumoto K, Endo Y, Nakajima M, Tanaka T, et al. Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagnosis and photodynamic therapy. 2013;10(3):288-95.
36. Krieg RC, Fickweiler S, Wolfbeis OS, Knuechel R. Cell‐type Specific Protoporphyrin IX Metabolism in Human Bladder Cancer in vitro¶. Photochemistry and photobiology. 2000;72(2):226-33.
37. Piccinelli P, Samuelsson T. Evolution of the iron-responsive element. Rna. 2007;13(7):952-66.
38. Ohgari Y, Miyata Y, Miyagi T, Gotoh S, Ohta T, Kataoka T, et al. Roles of Porphyrin and Iron Metabolisms in the δ‐Aminolevulinic Acid (ALA)‐induced Accumulation of Protoporphyrin and Photodamage of Tumor Cells. Photochemistry and Photobiology. 2011;87(5):1138-45.
39. Hayashi M, Fukuhara H, Inoue K, Shuin T, Hagiya Y, Nakajima M, et al. The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid. PLoS One. 2015;10(3):e0122351.
40. Berg K, Anholt H, Bech Ø, Moan J. The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells. British journal of cancer. 1996;74(5):688-97.
41. Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein & cell. 2014;5(10):750-60.
42. Eid R, Arab NT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2017;1864(2):399-430.
43. Barman-Aksözen J. Influence of iron metabolism on gene expression in erythropoietic protoporphyria: University of Zurich; 2014.
44. Garcia dos Santos D, Schranzhofer M, Chun NL, Hamdi A, Ponka P. Transcriptional induction of transferrin receptors by heme in erythroid cells. American Society of Hematology Washington, DC; 2015.
45. Miura M, Ito K, Hayashi M, Nakajima M, Tanaka T, Ogura S-i. The effect of 5-aminolevulinic acid on cytochrome P450-mediated prodrug activation. PLoS One. 2015;10(7):e0131793.
46. Saito K, Fujiwara T, Ota U, Hatta S, Ichikawa S, Kobayashi M, et al. Dynamics of absorption, metabolism, and excretion of 5-aminolevulinic acid in human intestinal Caco-2 cells. Biochemistry and biophysics reports. 2017;11:105-11.
47. Laskey JD, Ponka P, Schulman HM. Control of heme synthesis during Friend cell differentiation: role of iron and transferrin. Journal of cellular physiology. 1986;129(2):185-92.
48. Lok C-N, Ponka P. Stimulation of Transferrin Receptor Expression by Enhanced Heme Biosynthesis in Murine Erythroleukemia Cells. American Society of Hematology; 2004.
49. Hamdi A, Garcia dos Santos D, Lok C-N, Schranzhofer M, Ponka P. Role of Heme in the Regulation of Transferrin Receptor Expression in Erythroid Cells. Blood. 2017;130(Supplement 1):3495-.
50. Rocha ME, Dutra F, Bandy B, Baldini RL, Gomes SL, Faljoni-Alário A, et al. Oxidative damage to ferritin by 5-aminolevulinic acid. Archives of Biochemistry and Biophysics. 2003;409(2):349-56.
51. Oteiza PI, Kleinman CG, Demasi M, Bechara EJ. 5-Aminolevulinic acid induces iron release from ferritin. Archives of Biochemistry and Biophysics. 1995;316(1):607-11.
52. Merlin Rocha ME, Bandy B, Costa CA, de Barros MP, Pinto AM, Bechara EJ. Iron mobilization by succinylacetone methyl ester in rats. A model study for hereditary tyrosinemia and porphyrias characterized by 5-aminolevulinic acid overload. Free radical research. 2000;32(4):343-53.
53. Di Mascio P, Teixeira PC, Onuki J, Medeiros MH, Dörnemann D, Douki T, et al. DNA damage by 5-aminolevulinic and 4, 5-dioxovaleric acids in the presence of ferritin. Archives of Biochemistry and Biophysics. 2000;373(2):368-74.
54. Biempica L, MH M. Hepatic porphyrias. Cytochemical and ultrastructural studies of liver in acute intermittent porphyria and porphyria cutanea tarda. 1974.
55. Daugherty AM, Raz N. Appraising the role of iron in brain aging and cognition: promises and limitations of MRI methods. Neuropsychology review. 2015;25(3):272-87.
56. Aubart M, Ou P, Elie C, Canniffe C, Kutty S, Delos V, et al. Longitudinal MRI and Ferritin monitoring of iron overload in chronically transfused and chelated children with sickle cell anemia and thalassemia major. Journal of Pediatric Hematology/Oncology. 2016;38(7):497-502.
57. Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1996;1275(3):161-203.
58. Kornreich L, Horev G, Yaniv I, Stein J, Grunebaum M, Zaizov R. Iron overload following bone marrow transplantation in children: MR findings. Pediatric radiology. 1997;27(11):869-72.
59. Kreeftenberg Jr HG, Mooyaart EL, Huizenga JR, Sluiter WJ, Kreeftenberg HG. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence. The Netherlands journal of medicine. 2000;56(4):133-7.
60. Lawrence SP, Caminer SJ, Yavorski RT, Borosky BD, Rak KM, Merenich JA, et al. Correlation of liver density by magnetic resonance imaging and hepatic iron levels: A noninvasive means to exclude homozygous hemochromatosis. Journal of clinical gastroenterology. 1996;23(2):113-7.
61. Li T, Aisen A, Hindmarsh T. Assessment of hepatic iron content using magnetic resonance imaging. Acta Radiologica. 2004;45(2):119-29.
62. Wood JC, Ghugre N. Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases. Hemoglobin. 2008;32(1-2):85-96.
63. Petrou E, Mavrogeni S, Karali V, Kolovou G, Kyrtsonis M-C, Sfikakis PP, et al. The role of magnetic resonance imaging in the evaluation of transfusional iron overload in myelodysplastic syndromes. Revista brasileira de hematologia e hemoterapia. 2015;37(4):252-8.
64. Ramalho J, Semelka R, Ramalho M, Nunes R, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. American Journal of Neuroradiology. 2016;37(7):1192-8.
65. Takahara T, Yoshikawa T, Saeki M, Nosaka S, Shimoyamada K, Nakajima Y, et al. High concentration ferric ammonium citrate (FAC) solution as a negative bowel contrast agent. Nihon Igaku Hoshasen Gakkai zasshi Nippon acta radiologica. 1995;55(6):425.
66. Eisenstein RS, Garcia-Mayol D, Pettingell W, Munro HN. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proceedings of the National Academy of Sciences. 1991;88(3):688-92.
67. Cho IK, Moran SP, Paudyal R, Piotrowska-Nitsche K, Cheng P-H, Zhang X, et al. Longitudinal monitoring of stem cell grafts in vivo using magnetic resonance imaging with inducible maga as a genetic reporter. Theranostics. 2014;4(10):972.
68. Sengupta A, Quiaoit K, Thompson RT, Prato FS, Gelman N, Goldhawk DE. Biophysical features of MagA expression in mammalian cells: implications for MRI contrast. Frontiers in microbiology. 2014;5:29.
69. Harmatys KM, Musso AJ, Clear KJ, Smith BD. Small molecule additive enhances cell uptake of 5-aminolevulinic acid and conversion to protoporphyrin IX. Photochemical & Photobiological Sciences. 2016;15(11):1408-16.
70. Casas A, Batlle A. Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy. Current medicinal chemistry. 2006;13(10):1157-68.
71. Tewari KM, Eggleston IM. Chemical approaches for the enhancement of 5-aminolevulinic acid-based photodynamic therapy and photodiagnosis. Photochemical & Photobiological Sciences. 2018;17(11):1553-72.
72. Alam MH, He T, Auger D, Smith GC, Drivas P, Wage R, et al. Validation of T2* in-line analysis for tissue iron quantification at 1.5 T. Journal of Cardiovascular Magnetic Resonance. 2016;18(1):23.
73. Halefoglu AM, Yousem DM. Susceptibility weighted imaging: clinical applications and future directions. World journal of radiology. 2018;10(4):30.
74. Langkammer C, Schweser F, Krebs N, Deistung A, Goessler W, Scheurer E, et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage. 2012;62(3):1593-9.
75. Alkemade A, de Hollander G, Keuken MC, Schäfer A, Ott DV, Schwarz J, et al. Comparison of T2*-weighted and QSM contrasts in Parkinson's disease to visualize the STN with MRI. PloS one. 2017;12(4):e0176130.
76. Yamamoto J, Kakeda S, Yoneda T, Ogura SI, Shimajiri S, Tanaka T, et al. Improving contrast enhancement in magnetic resonance imaging using 5-aminolevulinic acid‑induced protoporphyrin IX for high-grade gliomas. Oncology Letters. 2017;13(3):1269-75.
77. Kaneko S, Kaneko S. Fluorescence-guided resection of malignant glioma with 5-ALA. International journal of biomedical imaging. 2016;2016.
78. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: technique and applications. World journal of radiology. 2016;8(9):785.
79. Ortel B, Tanew A, Hönigsmann H. Lethal photosensitization by endogenous porphyrins of PAM cells—modification by desferrioxamine. Journal of Photochemistry and Photobiology B: Biology. 1993;17(3):273-8.
80. Rittenhouse‐Diakun K, Leengoed HV, Morgan J, Hryhorenko E, Paszkiewicz G, Whitaker J, et al. The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor δ‐aminolevulinic acid (ALA). Photochemistry and photobiology. 1995;61(5):523-8.
81. Tokuoka Y, Watanabe K, Koiwa Y, Kosobe T, Wakui S, Kawashima N. Effect of deferoxamine mesylate on photodynamic therapy of murine thymic lymphoma cells with 5-aminolevulinic acid. Porphyrins. 2003;12:7-11.
82. Hradilek A, Neuwirt J. Inhibition of cellular iron uptake by haem in mouse erythroleukaemia cells. British Journal of Haematology. 1989;73(3):410-5.
83. Demasi M, Penatti CA, Delucia R, Bechara EJ. The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias. Free Radical Biology and Medicine. 1996;20(3):291-9.
84. Schranzhofer M, Schifrer M, Cabrera JA, Kopp S, Chiba P, Beug H, et al. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood. 2006;107(10):4159-67.