1. Schröder E. Methanol Adsorption on Graphene. J Nanomater. 2013;13:1303-3774.
2. Elfasakhany A. Performance and emissions of spark-ignition engine using ethanol–methanol–gasoline, n-butanol–iso-butanol–gasoline and iso-butanol–ethanol–gasoline blends: a comparative study. Int J Eng Sci Technol. 2016;19(4):2053-9.
3. Bata RM, Roan VP. Effects of Ethanol and/or Methanol in Alcohol-Gasoline Blends on Exhaust Emissions. J Eng Gas Turbines Power. 1989;111(3):432-8.
4. BahattinÇelik M, Özdalyan B, Alkan F. The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel. 2011;90(4):1591-8.
5. Wang X, Ge Y, Liu L, Peng Z, Hao L, Yin H, et al. Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios. Appl Energy. 2015;157:134-43.
6. Zhang Z, Cheung C, Chan T, Yao C. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst. Science of the Total Environment. 2009;407(15):4497-505.
7. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. nature. 2006;442(7100):282-6.
8. Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41(2):666-86.
9. Xu X, Zhou Y, Yuan T, Li Y. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea. Electrochim Acta. 2013;112:587-95.
10. Zhang L-S, Liang X-Q, Song W-G, Wu Z-Y. Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys. 2010;12(38):12055-9.
11. Jia X, Zhang H, Zhang Z, An L. Effect of doping and vacancy defects on the adsorption of CO on graphene. Materials Chemistry and Physics. 2020;249:123114.
12. Zhu X, Zhang L, Zhang M, Ma C. Effect of N-doping on NO2 adsorption and reduction over activated carbon: An experimental and computational study. Fuel (Guildford). 2019;258:116109.
13. Dong L, Gari RRS, Li Z, Craig MM, Hou S. Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon. 2010;48(3):781-7.
14. Rad AS. Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene. Physica E: Low-dimensional Systems and Nanostructures. 2016;83:135-40.
15. Kiyani R, Rowshanzamir S, Parnian MJ. Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance. Energy. 2016;113:1162-73.
16. Lv R, Terrones M. Towards new graphene materials: Doped graphene sheets and nanoribbons. Mater Lett. 2012;78:209-18.
17. Zhao XW, Tian YL, Yue WW, Chen MN, Hu GC, Ren JF, et al. Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations. Int J Mod Phys B. 2018;32(09):1850102.
18. Wang H, Maiyalagan T, Wang X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis. 2012;2(5):781-94.
19. Doronin M, Bertin M, Michaut X, Philippe L, Fillion J-H. Adsorption energies and prefactor determination for CH3OH adsorption on graphite. J Chem Phys. 2015;143:084703.
20. Xu X, Zhou Y, Lu J, Tian X, Zhu H, Liu J. Single-step synthesis of PtRu/N-doped graphene for methanol electrocatalytic oxidation. Electrochim Acta. 2014;120:439-51.
21. Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648-52.
22. Calais J-L. Density-functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 pp. Price £45.00. Int J Quantum Chem. 1993;47(1):101-.
23. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37(2):785-9.
24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, et.al. G09. Exp limit comput chem 2009.
25. ShokuhiRad A, Shabestari SS, Jafari SA, Zardoost MR, Mirabi A. N-doped graphene as a nanostructure adsorbent for carbon monoxide: DFT calculations. Molecular Physics. 2016;114(11):1756-62.
26. Chattaraj PK, Sarkar U, Roy DR. Electrophilicity Index. Chem Rev. 2006;106(6):2065-91.
27. Morrison RC. The extended Koopmans’ theorem and its exactness. The Journal of Chemical Physics. 1992;96(5 ):10.1063/1.461875.
28. Parr RG, Szentpály Lv, Liu S. Electrophilicity Index. Journal of the American Chemical Society. 1999;121(9):1922-4.
29. Liu G-H, Parr RG. On Atomic and Orbital Electronegativities and Hardnesses. J Am Chem Soc. 1995;117(11):3179-88.
30. Raju HB, Goldberg JL. Nanotechnology for ocular therapeutics and tissue repair. Expert Review of Ophthalmology. 2008;3(4):431-6.
31. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis. 2010;22(10):1027-36.
32. Marcou G, Flamme B, Beck G, Chagnes A, Mokshyna O, Horvath D, et al. In silico Design, Virtual Screening and Synthesis of Novel Electrolytic Solvents. Molecular Informatics. 2019;38(10):1900014.
33. Rozas I, Alkorta I, Elguero J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. J Am Chem Soc. 2000;122(45):11154-61.
34. Politzer P, Murray JS. Quantitative Analyses of Molecular Surface Electrostatic Potentials in Relation to Hydrogen Bonding and Co-Crystallization. Cryst Growth Des. 2015;15(8):3767-74.
35. Esfandfard SM, Elahifard M, Behjatmanesh-Ardakanii R, Kargar H. DFT study on oxygen-vacancy stability in rutile/anatase TiO2: Effect of cationic substitutions. Physical Chemistry Research. 2018;6:547-63.
36. Khosravi A, Vessally E, Oftadeh M, Behjatmanesh-Ardakani R. Ammonia capture by MN4 (M = Fe and Ni) clusters embedded in graphene. Journal of Coordination Chemistry. 2018;71(21):3476-86.
37. O'Boyle N, Tenderholt A, Langner K. cclib: A Library for Package-Independent Computational Chemistry Algorithms. J Comput Chem. 2008;29(5):839-45.
38. Bader RFW. Atoms in Molecules: A Quantum Theory (International Series of Monographs on Chemistry (22)). Science & Math. 1994;22:458.
39. Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, et al. Multiphilic Descriptor for Chemical Reactivity and Selectivity. J Phys Chem A. 2007;111(37):9130-8.
40. Islam DN, Ghosh D. On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness. Int J Mol Sci. 2012;13:2160-75.
41. Weinhold F, Landis CR. NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS. Chemistry Education Research and Practice. 2001;2(2):91-104.
42. Ziolkowski M, Grabowski SJ, Leszczynski J. Cooperativity in hydrogen-bonded interactions: ab initio and "atoms in molecules" analyses. J Phys Chem A. 2006;110(20):6514-21.