Document Type : Original Paper

Authors

Department of Geology, Faculty of Sciences, University of Hormozgan, Hormozgan, Iran, Islamic Republic of Iran

Abstract

The Upper Cretaceous Arangue complex is located in the Makran zone at the SE of Iran. The complex consists of ultra-mafic rocks, microgabbro dykes, pillow lavas and lime stones that pillow lavas are mainly exposed to the northwest and southeast part of study area. There are oval and tubular basalt lavas with cracked bread crust surface. They predominantly have plagioclase, clinopyroxene with minor olivine and opaque minerals in a fine-grained groundmass along with glass. Mineral chemistry data show that plagioclases and clinopyroxene composition varies from An68.27-81.73 Ab18.27-31.57 Or0-0.41 and Wo38.1- 47.8Fs8.2-19.3 En38.6-48.7 respectively. In the geochemical diagrams, the Arangue complex pillow lavas fall in the basalt and sub-alkaline fields. Geochemical data indicate that the Arangue complex pillow lavas are tholeiitic. The absence of a distinct Eu anomaly (Eu/Eu*= 0.8-1.2), indicates that plagioclase fractionation is not notable, or that the magma is a little oxidized. The Arangue complex pillow lavas show properties similar to transitional basalts between enriched MORB and OIB and some BABB. However, their enrichment in incompatible elements and low Nb and La / Nb ratios (0.8-2.1) display that these have affinity of the BABB.  These were produced by approximately 15-25% partial melting of plagioclase lherzolite where fractionation was controlled by removal of clinopyroxene, spinel, and olivine. Petrogenetic study indicates that the source of mantle lherzolite is subjected to enrichment variables in subduction components consisting of fluids for the Arangue Complex pillow lavas.

Keywords

  1. Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bulletin. 2011; 123(3-4): 387-411.
  2. Moghadam HS, Corfu F, Chiaradia M, Stern RJ, Ghorbani G. Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos. 2014; 210: 224-241.
  3. Saccani E, Delavari M, Beccaluva L, Amini S. Petrological and geochemical constraints on the origin of the Nehbandan ophiolitic complex (eastern Iran): Implication for the evolution of the Sistan Ocean. Lithos. 2010; 117(1-4):209-228.
  4. Arvin M, Robinson PT. The petrogenesis and tectonic setting of lavas from the Baft ophiolitic mélange, southwest of Kerman, Iran. Can. J. Earth. Sci. 1994; 31(5):824-834.
  5. Shahzeidi M, Moayyed M, Murata M, Yui TF, Arai S, Chen F, Pirnia T, Ahmadian J. Late Ediacaran crustal thickening in Iran: Geochemical and isotopic constraints from the~ 550 Ma Mishu granitoids (northwest Iran). Int. Geol. Rev. 2017; 59(7):793-811.
  6. Torabi Gh. Metamorphism of mantle peridotites in Jandaq ophiolite (Central Iran). J. Petrol (In Persian). 2012; 3 (11): 1-18.
  7. Baluchi S, Sadeghian M, Ghasemi H, Mingo J, Lee CL, Yanbin J. Mineral chemistry, geochronology and isotopic geochemistry of Rb-Sr and Sm-Nd Iraqi granites. Kharazmi. J. Earth Sci (In Persian). 2017; 3 (2): 160-139.
  8. Haghipour A. Precambrian in central Iran: lithostratigraphy, structural history and petrology. Iran. Petroleum. Institute. Bullet. 1981; 81: 1–17.
  9. Hajialioghli R, Moazzen M, Droop G T R, Oberhansli R, Bousquet R, Jahangiri A, Ziemann M. Serpentine polymorphs and P-T evolution of meta-peridotites and serpentinites in the Takab area, NW Iran. Mineral. Mag. 2007; 71: 155–174.
  • Saki A. Proto–Tethyan remnants in northwest Iran: Geochemistry of the gneisses and metapelitic rocks. Gondwana. Res. 2010; 17(4): 704–714.
  • Khalatbari-Jafari M, Juteau T, Bellon H, Emami H. Discovery of two ophiolite complexes of different ages in the Khoy area (NW Iran). Comptes. Rendus. Geoscience. 2003; 335 (12): 917-929.
  • Khalatbari-Jafari M, Juteau T, Bellon H, Whitechurch H, Cotten J, Emami H. New geological, geochronological and geochemical investigations on the Khoy ophiolites and related formations, NW Iran.  Asian. Earth. Sci. 2004; 23 (4): 507-535.
  • Khalatbari-Jafari M, Juteau T, Cotten J. Petrological and geochemical study of the Late Cretaceous ophiolite of Khoy (NW Iran), and related geological formations.  Asian. Earth. Sci. 2006; 27(4): 465-502.
  • Stöcklin J. Northern iran: Alborz Mountains. Geological Society, London, Special Publications. 1974; 4(1):213-234.
  • Sahandi MR, Soheili M. 1/100000 Geological map of Iran. Geology Survey and Mineral Exploration of Iran. 2014; 5: 214-215.
  • Pirouz M, Avouac JP, Gualandi A, Hassanzadeh J, Sternai P. Flexural bending of the Zagros foreland basin. Geophysic. J. Int. 2017; 210(3):1659-1680.
  • Moghadam HS, Stern RJ. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia :( II) Mesozoic ophiolites. J. Asian. Earth. Sci. 2015; 100:31-59.
  • Samimi Namin M. 1/250000Taheruiyeh geological map. Geology Survey and Mineral Exploration of Iran. 1982; 2: 113-114.
  • McCall GJ, Kidd RG. The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present. Geological Society, London, Special Publications. 1982; 10(1):387-397.
  • Ghazi AM, Hassanipak AA, Mahoney JJ, Duncan RA. Geochemical characteristics, 40Ar–39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, SE Iran. Tectonophysics. 2004; 393(1-4):175-196.
  • Moslempour ME, Khalatbari-Jafari M, Morishita T, Ghaderi M. Petrology and Geochemistry of Peridotites fromFannuj-Maskutan Ophiolitic Complex, Makran Zone, SE Iran. J. Geosci. 2013; 22(87):181-196.
  • Moslempour ME, Khalatbari-Jafari M, Ghaderi M, Yousefi H, Shahdadi S. Petrology, geochemistry and tectonics of the extrusive sequence of Fannuj-Maskutan ophiolite, Southeastern Iran. J. Geol. Soc. India. 2015; 85(5):604-618.
  • Sepidbar F, Lucci F, Biabangard H, Zaki Khedr M, Jiantang P. Geochemistry and tectonic significance of the Fannuj-Maskutan SSZ-type ophiolite (Inner Makran, SE Iran). Int. Geol. Rev. 2020; 62(16):2077-2104.
  • Shahabpour J. Tectonic implications of the geochemical data from the Makran igneous rocks in Iran. Island Arc. 2010; 19: 676-689.
  • Saccani E, Delavari M, Dolati A, Marroni M, Pandolfi L, Chiari M, Barbero E. New insights into the geodynamics of Neo-Tethys in the Makran area: Evidence from age and petrology of ophiolites from the Coloured Melange Complex (SE Iran). Gondwana. Res. 2017; 62: 306-327.
  • Siddiqui RH, Jan MQ, Khan MA. Petrogenesis of late Cretaceous lava flows from a Ceno-Tethyan island arc: The Raskoh arc, Balochistan, Pakistan. J. Asian. Earth. Sci. 2012; 59:24-38.
  • Burg JP, Dolati A, Bermoulli D, Smit J. Structural style of the Makran tertiary accretionary complex in SE-Iran, in Al, H.K., Roure F., Ellison R., and Lokier S., eds., Lithosphere dynamics and sedimentary basins: The Arabian Plate and analogues Front. Earth Sci. 2013; 2: 239-259.
  • Walker GP. Morphometric study of pillow-size spectrum among pillow lavas. Bullet. Volcanol. 1992; 54(6):459-474.
  • Sinton J, Bergmanis E, Rubin K, Batiza R, Gregg TK, Grönvold K, Macdonald KC, White SM. Volcanic eruptions on mid-ocean ridges: New evidence from the superfast spreading East Pacific Rise, 17–19 S. J. Geophysic. Res: Solid Earth. 2002; 107(B6): ECV-3.
  • Whitney DL, Evans BW. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010; 95(1):185-187.
  • Deer WA, Howie RA, Zussman J. An introduction to the Rock-Forming Minerals: Longman, London. 1992; 1:1-696.
  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G. Nomenclature of pyroxenes. Mineral. Mag. 1988; 52: 535-550.
  • Pearce JA, Norry MJ. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contribut. Mineral. Petrol. 1979; 69(1):33-47.
  • Venturelli G, Thorpe RS, Potts PJ. Rare earth and trace element characteristics of ophiolitic metabasalts from the Alpine-Apennine belt. Earth. Planet. Sci. Lett. 1981; 53(1):109-123.
  • Humphris SE, Thompson G. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochim. Cosmochim. Acta. 1978; 42(1):127-36.
  • Daly K.B. A study of the mafic plutons along the Bloody Bluff Fault in northeastern Massachusetts: Placing constraints on the tectonic environment using geochemical and petrologic analysis. M.Sc. thesis, Boston College. 2003; 1-157p.
  • Shervais JW. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth. Planet. Sci. Lett. 1982; 59(1):101-118.
  • Wang Z, Wilde SA, Wang K, Yu L. A MORB-arc basalt–adakite association in the 2.5 Ga Wutai greenstone belt: late Archean magmatism and crustal growth in the North China Craton. Precambrian. Res. 2004; 131(3-4):323-343.
  •  

 

  • Yuan C, Sun M, Zhou MF, Xiao W, Zhou H. Geochemistry and petrogenesis of the Yishak Volcanic Sequence, Kudi ophiolite, West Kunlun (NW China): implications for the magmatic evolution in a subduction zone environment. Contribut. Mineral. Petrol. 2005; 150(2):195-211.
  • Winchester JA, Floyd PA. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977; 20:325-43.
  • Saunders AD, Tarney J. The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochim. Cosmochim. Acta. 1979; 43(4):555-72.
  • Pearce JA, Alabaster T, Shelton AW, Searle MP. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philosophical Transactions of the Royal Society of London. Series A, Math. Physic. Sci. 1981; 300(1454):299-317.
  • Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications. 1989; 42(1):313-45.
  • Pearce JA. Role of the sub-continental lithosphere in magma genesis at active continental margin. In: Hawkesworth CJ, Norry MJ, (Eds.), continental basalts and mantle xenoliths. Shiva Publishing, Cheshire, United Kingdom. 1983; 24: 230-249.
  • Pearce JA, Peate DW. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth. Planet. Sci. 1995; 23:251-286.
  • Pearce JA. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos. 2008; 100: 14-48.
  • Taylor SR, McLennan SM. The continental crust: its composition and Evolution; an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publication, Oxford. 1985; 1: 1-312.
  • Murton BJ. Tectonic controls on boninite genesis. Geological Society, London, Special Publications. 1989; 42(1):347-377.