Document Type : Original Paper

Authors

Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Islamic Republic of Iran

Abstract

Activin A is a member of transforming growth factor β (TGF-β) superfamily. It plays numerous roles in the body such as cell growth regulation and differentiation, wound repairing and modulation of inflammatory responses. More importantly, it can be used as a therapeutic agent; so recombinant production of it, especially in the periplasm of E. coli as an economical bacterium is of great value. The aim of this study is large- scale production of activin A with a correct structure. For this purpose, three strategies were used. First, an efficient and appropriate signal peptide, modified Iranian Bacillus Licheniformis α-amylase signal peptide, was selected to secrete activin A to the E. coli periplasm as a suitable environment for correct protein folding. Second, cytoplasmic chaperones, Dnak, DnaJ, GroEL/ GroES, TF (trigger factor) were expressed simultaneously with activin A. Finally, the agitation rate was optimized to achieve the highest production of Activin A at the bioreactor scale. Our results indicated that by the co-expression of TF with activin A and using agitation rate of 1000 rpm maximum expression of activin A in E. coli was obtained. More importantly, based on the CD spectroscopy results and bioassay test the produced activin A had the correct secondary structure as the commercial type and was fully active.

Keywords

  1. Litwack G. Activins and inhibins: Academic Press; 2011.
  2. Jones KL, De Kretser DM, Patella S, Phillips DJ. Activin A and follistatin in systemic inflammation. Mol. Cell. Endocrinol. 2004;225(1-2):119-25.
  3. Hübner G, Hu Q, Smola H, Werner S. Strong induction of activin expression after injury suggests an important role of activin in wound repair. Dev. Biol. 1996;173(2):490-8.
  4. Chen YG, Wang Q, Lin SL, Chang CD, Chung J, Ying S-Y. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp. Biol. Med. 2006;231(5):534-44.
  5. Abdipranoto Cowley A, Park JS, Croucher D, Daniel J, Henshall S, Galbraith S, et al. Activin A is essential for neurogenesis following neurodegeneration. Stem cells. 2009;27(6):1330-46.
  6. Papakonstantinou T, Harris SJ, Fredericks D, Harrison C, Wallace EM, Hearn MT. Synthesis, purification and bioactivity of recombinant human activin A expressed in the yeast Pichia pastoris. Protein. Expr. Purif. 2009;64(2):131-8.
  7. Hajihassan Z, Khairkhah N, Zandsalimi F. Enhanced periplasmic expression of human activin A in Escherichia coli using a modified signal peptide. Prep. Biochem. Biotechnol. 2020;50(2):141-7.
  8. Cronin CN, Thompson DA, Martin F. Expression of bovine activin-A and inhibin-A in recombinant baculovirus-infected Spodoptera frugiperda Sf21 insect cells. Int. J. Biochem. Cell. Biol. 1998;30(10):1129-45.
  9. Chen R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 2012;30(5):1102-7.
  10. Schrödel A, de Marco A. Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem. 2005;6(1):1-11.
  11. Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta Proteins Proteom. 2004;1699(1-2):35-44.
  12. Missiakas D, Raina S. Protein folding in the bacterial periplasm. J. Bacteriol. 1997;179(8):2465.
  13. Sonoda H, Kumada Y, Katsuda T, Yamaji H. Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli. J. Biosci. Bioeng. 2011;111(4):465-70.
  14. Pei X, Wang Q, Meng L, Li J, Yang Z, Yin X, et al. Chaperones-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. J. Biotechnol. 2015;203:9-16.
  15. Tong Y, Feng S, Xin Y, Yang H, Zhang L, Wang W, et al. Enhancement of soluble expression of codon-optimized Thermomicrobium roseum sarcosine oxidase in Escherichia coli via chaperone co-expression. J. Biotechnol. 2016;218:75-84.
  16. Hajihassan Z, Tilko PG, Sadat SM. Improved Production of Recombinant Human β-NGF in Escherichia coli–a Bioreactor Scale Study. Pol. J. Microbiol. 2018;67(3):355.
  17. Sambrook J, Russell DW. The condensed protocols from molecular cloning: a laboratory manual 2006.
  18. Hajihassan Z, Sohrabi M, Rajabi Bazl M, Eftekhary H. Expression of human nerve growth factor beta and bacterial protein disulfide isomerase (DsbA) as a fusion protein (DsbA: hNGF) significantly enhances periplasmic production of hNGF beta in Escherichia coli. Rom Biotechnol Lett. 2016;21(5):11850-6.
  19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.
  20. De Maio A. Protein blotting and immunoblotting using nitrocellulose membranes. In “Protein Blotting. A Practical Approach”(Dunbar, BS, Ed.). IRL Press, New York; 1994.
  21. Hajihassan Z, Abdi M, Roshani Yasaghi E, Rabbani-Chadegani A. Optimization of recombinant beta-NGF purification using immobilized metal affinity chromatography. Minerva Biotecnol. 2017;29:126-32.
  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72(1-2):248-54.
  23. Schwall RH, Lai C. Erythroid differentiation bioassays for activin. Meth. Enzymol. 198: Elsevier; 1991. p. 340-6.
  24. Zandsalimi F, Hajihassan Z, Hamidi R. Denovo designing: a novel signal peptide for tat translocation pathway to transport activin A to the periplasmic space of E. coli. Biotechnol Lett. 2020;42(1):45-55.
  25. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9(7):671-5.
  26. Huang C-J, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J. Ind. Microbiol. Biotechnol. 2012;39(3):383-99.
  27. Owji H, Nezafat N, Negahdaripour M, Hajiebrahimi A, Ghasemi Y. A comprehensive review of signal peptides: Structure, roles, and applications. Eur. J. Cell Biol. 2018;97(6):422-41.
  28. Bowers CW, Lau F, Silhavy TJ. Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J. Bacteriol. 2003;185(19):5697-705.
  29. Adams H, Scotti PA, de Cock H, Luirink J, Tommassen J. The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signal-recognition particle in Escherichia coli. Eur. J. Biochem. 2002;269(22):5564-71.
  30. Singh P, Sharma L, Kulothungan SR, Adkar BV, Prajapati RS, Ali PSS, et al. Effect of signal peptide on stability and folding of Escherichia coli thioredoxin. PloS one. 2013;8(5):e63442.
  31. Sletta H, Tøndervik A, Hakvåg S, Aune TV, Nedal A, Aune R, et al. The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Appl. Environ. Microbiol. 2007;73(3):906-12.
  32. Berks BC, Sargent F, Palmer T. The Tat protein export pathway. Mol. Microbiol. 2000;35(2):260-74.
  33. Fekkes P, Driessen AJ. Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 1999;63(1):161-73.
  34. Danese PN, Silhavy TJ. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu. Rev. Genet. 1998;32(1):59-94.
  35. Jeong KJ, Lee SY. Secretory production of human granulocyte colony-stimulating factor in Escherichia coli. Protein Expr. Purif. 2001;23(2):311-8.
  36. Yamabhai M, Emrat S, Sukasem S, Pesatcha P, Jaruseranee N, Buranabanyat B. Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. J. Biotechnol. 2008;133(1):50-7.

 

  1. Jonet MA, Mahadi NM, Murad AMA, Rabu A, Bakar FDA, Rahim RA, et al. Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli. J. Mol. Microbiol. Biotechnol. 2012;22(1):48-58.
  2. Caspers M, Brockmeier U, Degering C, Eggert T, Freudl R. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide. Appl. Microbiol. Biotechnol. 2010;86(6):1877-85.
  3. de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC biotechnol. 2007;7(1):32.
  4. Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour. Technol. 2012;123:135-43.
  5. Jia Q, Fan D, Ma P, Ma X, Xue W. The different roles of chaperone teams on over-expression of human-like collagen in recombinant Escherichia coli.J. Taiwan. Inst. Chem. Eng. 2014;45(6):2843-50.
  6. Thiry M, Cingolani D. Optimizing scale-up fermentation processes. TRENDS Biotechnol. 2002;20(3):103-5.
  7. Lee EJ, Lee BH, Kim BK, Lee JW. Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran. Mol. Biol. Rep. 2013;40(5):3609-21.
  8. Çalik P, Yilgör P, Ayhan P, Demir AS. Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem. Eng. Sci. 2004;59(22-23):5075-83.
  9. Kaya-Çeliker H, Angardi V, Çalık P. Regulatory effects of oxygen transfer on overexpression of recombinant benzaldehyde lyase production by Escherichia coli BL21 (DE3). Biotechnology Journal: Healthcare Nutrition Technology. 2009;4(7):1066-76.
  10. Zaslona H, Trusek-Holownia A, Radosinski L, Hennig J. Optimization and kinetic characterization of recombinant 1, 3-β-glucanase production in E scherichia coli K-12 strain BL21/pETSD10–a bioreactor scale study. Lett. Appl. Microbiol. 2015;61(1):36-43.
  11. Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee U. Enantioselective nitrilase from Pseudomonas putida: cloning, heterologous expression, and bioreactor studies. Mol. Biotechnol. 2009;41(1):35-41.