Document Type : Original Paper


Departmentof Botany, Faculty of Sciences, Central Laboratory, Shahrekord University, Shahrekord, Islamic Republic of Iran


Marrubium and Ballota are known to be important medicinal plants belonging to the Lamiaceae family. Their aerial parts have been widely used in traditional medicine. The present study, for the first time, aimed to investigate flavonoid constituents and chromatographic pattern of the methanolic extract of leaf from Marrubium and Ballota species. The technique was performed on High Performance Liquid Chromatography (HPLC)-Micromass Quattro micro Atmospheric Pressure Ionization (API)  Mass Spectrometer in six taxa. A total of 59 chemical compounds were recognized, among which 49 flavonoids, three polyphenols, and one methoxyphenol were identified. In addition, five chemical groups were recognized in Marrubium and Ballota species. It is noteworthy that Marrubium and Ballota species provide a major source of apigenin, kaempferol, and quercetin glycosides. The flavonoid compounds, such as licoricidin, sophoraflavanone G, and methyl robustone were highly frequent considering qualitative markers for the genus Marrubium. Despite the striking similarity between Marrubium and Ballota species, they were accurately separated using chemical markers, particularly the mass (MS/MS) spectra of flavonoid compounds, which can develop the functional products and pharmaceutical, chemotaxonomic, and chemo diversity purposes for Marrubium and Ballota genera. 


  1. Jamzad Z. Lamiaceae. In: Asadi M, Masoumi AA, Mozafarian V (eds.) Flora Iran. Research Institute of Forest and Rangelands, Tehran. 2012;76:152-251.
  2. Cocan I, Alexa E, Danciu C, Radulov I, Galuscan A, Obistioiu D, et al. Phytochemical screening and biological activity of Lamiaceae family plant extracts. Experim Ther Med. 2018;15:1863-1870.
  3. Kharazian N, Hashemi M. Chemotaxonomy and morphological studies in five Marrubium species in Iran. Iran J Sci Technol. 2017;41:17-31.
  4. Akgul G, Ketenoglu O, Pinar NM, Kurt L. Pollen and seed morphology of the genus Marrubium (Lamiaceae) in Turkey. Ann Botanici Fennici. 2008;45:1-10.
  5. Seybold S. Marrubium L. In: Rechinger KH (ed.) Flora Iranica. Akademische Druck- und Verlagsanstalt, Graz. 1982;150:88-108.
  6. Boulila A, Sanaa A, Salem IB, Rokbeni N, Mrabet Y, Hosni K, et al. Antioxidant properties and phenolic variation in wild populations of Marrubium vulgare (Lamiaceae). Indust Crops Prod. 2015;76:616-622.
  7. Rechinger KH. Ballota L. In: Rechinger KH (ed.) Flora Iranica. Akademische Druck- und Verlagsanstalt, Graz. 1982;150:350-354.
  8. Yilmaz B, Citoglu G. High performance liquid chromatographic analysis of some flavonoids of Ballota Chem Nat Compounds. 2006;42:353-355.
  9. Toth E, Toth G, Mathe I, Blunden G. Martynoside, forsythoside B, ladanein and 7a-acetoxyroyleanone from Ballota nigra Biochem Syst Ecol. 2007;35:894-897.
  10. Jafari Dehkordi F,Kharazian N,Lorigooini Z. Characterization of flavonoid components in Scutellaria L. species (Lamiaceae) using fingerprinting analysis. Acta Biol Cracov Series Botan. 2020;62:79-96.
  11. Nawwar MA, El-Mousallamy AM, Barakat HH, Buddrus J, Linscheid M. Flavonoid lactates from leaves of Marrubium vulgare. Phytochemistry. 1989;28:3201-3206.
  12. Karioti A, Skaltsa H, Heilmann J, Sticher O. Acylated flavonoid and phenylethanoid glycosides from Marrubium velutinum. Phytochemistry. 2003;64:655-660.
  13. Sarikurkcu C, Ozer MS, Calli N, Popovic-Djordjevic J. Essential oil composition and antioxidant activity of endemic Marrubium parviflorum oligodon. Indust Crops Prod. 2018;119:209-213.
  14. Aghakhani F, Kharazian N, Lori Gooini Z. Flavonoid constituents of Phlomis (Lamiaceae) species using liquid chromatography mass spectrometry. Phytochem Analy. 2018;29:180-195.
  15. Pratima NA, Gadikar R. Liquid chromatography-mass spectrometry and its applications: a brief review. Arch Organ Inorgan Chem Sci. 2018;1:26-34.
  16. Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J Agricultur Food Chem. 2010;58:10576-10581.
  17. Celik SE, Tufan AN, Bekdeser B, Ozyurek M, Guclu K, Apak R. Identification and determination of phenolics in Lamiaceae species by UPLC-DAD-ESI-MS/MS. J Chromatograph Sci. 2017;55:291-300.
  18. Taamalli A, Arraez‐Roman D, Abaza L, Iswaldi I, Fernandez‐Gutierrez A, Zarrouk M, et al. LC‐MS‐based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem Analy. 2015;26:320-330.
  19. Pereira OR, Domingues MR, Silva AM, Cardoso SM. Phenolic constituents of Lamium album: Focus on isoscutellarein derivatives. Food Res Int. 2012;48:330-335.
  20. Sobeh M, El-Hawary E, Peixoto H, Labib RM, Handoussa H, Swilam N, et al. Identification of phenolic secondary metabolites from Schotia brachypetala (Fabaceae) and demonstration of their antioxidant activities in Caenorhabditis elegans. Peer J. 2016;4:e2404.
  21. Mass Bank High Quality Mass Spectral Database; http://www.mass Mass Bank (accessed Nov. 24, 2006).
  22. Chemspider Search and Share Chemistry; (accessed Feb. 8, 2003).
  23. Metlin- Scripps Research; (accessed Jul. 27, 2004).
  24. MoNA- Mass Bank of North America; (accessed Jul. 19, 2015).
  25. Lin W, Liu S, Wu B. Structural identification of chemical constituents from Scutellaria baicalensis by HPLC-ESI-MS/MS and NMR spectroscopy. Asian J Chem. 2013;25:3799-3805.
  26. Petreska J, Stefova M, Ferreres F, Moreno D, Tomas-Barberan F, Stefkov G, et al. Potential bioactive phenolics of Macedonian Sideritis species used for medicinal “Mountain Tea”. Food Chem. 2011;125:13-20.
  27. Garcıa-Argaeza AN, Gonzalez-Lugob N, Parra-Delgado MH, Martınez-Vazquez M. Casimiroin, zapoterin, zapotin and 5,6,2’,3’,4’-pentamethoxyflavone from Casimiroa pubescens. Biochem Syst Ecol. 2005;33:441-443.

28. Eshbokova KA, Toshmatov ZO, Yili A, Aisa HA, Abdullaev ND. Flavonoid galacturonides and glucuronide from the aerial part of Scutellaria schachristanica. Chem Nat Compounds. 2013;49:103-105.

  1. Arun K, Brindha P. Investigations into phenolic and alkaloid constituents of Jatropha tanjorensis by LC-MS/MS and evaluating its bioactive property. Asian J Chem. 2015;27:3249-3253.
  2. Bero J, Frederich M, Quetin‐Leclercq J. Antimalarial compounds isolated from plants used in traditional medicine. J Pharma Pharmacol. 2009;61:1401-1433.
  3. Rahman AU. Studies in natural products chemistry. Elsevier, Amsterdam. 2005;266.
  4. Hussain A, Perveen S, Malik A, Afza N, Iqbal L, Tareen R. Urease inhibitory flavone glucosides from Marrubium anisodon. Poland J Chem. 2009;83:1329-1335.
  5. Reed KA. Identification of phenolic compounds from peanut skin using HPLC-msn. Dissertation. Virginia Polytechnic Institute and State University, United States. 2009; 197-210.
  6. Hassan WH, Abdelaziz S, Al Yousef HM. Chemical composition and biological activities of the aqueous fraction of Parkinsonea aculeata growing in Saudi Arabia. Arab J Chem. 2018;12:377-387.
  7. Krauze-Baranowska M, Glod D, Kula M, Majdan M, Halasa R, Matkowski AKozlowska W, et al. Chemical composition and biological activity of Rubus idaeus shoots – a traditional herbal remedy of Eastern Europe. J Complem Alter Med. 2014;14:1-12.
  8. Farag MA, Sakna ST, El-fiky NM, Shabana MM, Wessjohann LA. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia species from Egypt using UHPLC–PDA–qTOF-MS and chemometrics. Phytochemistry. 2015;119:41-50.
  9. Figueiredo-Gonzalez M, Valentao P, Andrade PB. Tomato plant leaves: From by-products to the management of enzymes in chronic diseases. Indust Crops Prod. 2016;94:621-629.
  10. Ye M, Yang WZ, Liu KD, Qiao X, Li BJ, Cheng J, et al. Characterization of flavonoids in Millettia nitida hirsutissima by HPLC/DAD/ESI-MSn. J Pharma Analy. 2012;2:35-42.
  11. Arkhipov A, Sirdaarta J, Matthews B, Cock I. Metabolomic profiling of Kigelia africana extracts with anti-cancer activity by high resolution tandem mass spectroscopy. Pharma Commun. 2014;4:10-32.
  12. Yin Q, Wang P, Zhang A, Sun H, Wu X, Wang X. Ultra‐performance LC‐ESI/quadrupole‐TOF MS for rapid analysis of chemical constituents of Shaoyao‐Gancao decoction. J Separat Sci. 2013;36:1238-1246.
  13. Raju KSR, Kadian N, Taneja I, Wahajuddin M. Phytochemical analysis of isoflavonoids using liquid chromatography coupled with tandem mass spectrometry. Phytochem Rev. 2015;14:469-498.
  14. Ma Ch, Dunshea FR, Suleri Hafiz AR. LC-ESI-QTOF/MS characterization of phenolic compounds in Palm fruits (Jelly and Fishtail Palm) and their potential antioxidant activities. Antioxidants. 2019;8:483-502.
  15. Kim SS, Peng LF, Lin W, Choe WH, Sakamoto N, Schreiber SL, et al. A cell-based, high-throughput screen for small molecule regulators of hepatitis C virus replication. Gastroenterology. 2007;132:311-320.


  • Bais S, Abrol N. Review on chemistry and pharmacological potential of amentoflavone. Curr Res Neurosci. 2016;6:16-22.
  1. Da Silva RZ, Yunes RA, de Souza MM, Delle Monache F, Cechinel-Filho V. Antinociceptive properties of conocarpan and orientin obtained from Piper solmsianum DC. var. solmsianum (Piperaceae). J Nat Med. 2010;64:402-408.
  2. Tao Y, Li W, Liang W, Van Breemen RB. Identification and quantification of gingerols and related compounds in ginger dietary supplements using high-performance liquid chromatography− tandem mass spectrometry. J Agricultur Food Chem. 2009;57:10014-10021.
  3. Oliveira H, Wu N, Zhang Q, Wang J, Oliveira J, de Freitas V, et al. Bioavailability studies and anticancer properties of malvidin based anthocyanins, pyranoanthocyanins and non-oxonium derivatives. Food Func. 2016;7:2462-2468.
  4. Francescato LN, Debenedetti SL, Schwanz TG, Bassani VL, Henriques AT. Identification of phenolic compounds in Equisetum giganteum by LC–ESI-MS/MS and a new approach to total flavonoid quantification. Talanta. 2013;105:192-203.
  5. Zimmermann BF, Walch SG, Tinzoh LN, Stuhlinger W, Lachenmeier DW. Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis (sage tea). J Chromatography B. 2011;879:2459-2464.
  6. Chen LC. When API mass spectrometry meets super atmospheric pressure ion sources. Mass Spectrom. 2015;4:1-11.