Document Type : Original Paper

Authors

1 1 Department of Microbial biotechnology, Faculty of Biological Sciences, Tehran North Branch, Islamic Azad University, Tehran, Islamic Republic of Iran

2 2 Department of Microbiology, Faculty of Sciences, Saveh Branch, Islamic Azad University, Saveh, Islamic Republic of Iran

Abstract

This study aimed to investigate the effects of Plantago ovata plant extract on the expression of beta-lactamase-producing genes in multidrug-resistant (MDR) K. pneumoniae isolates. This study was conducted on 50 samples of COVID-19 patients admitted to the intensive care unit of respiratory hospitals. K. pneumoniae isolates were identified using standard biochemical tests, culturing, and Gram staining. The antibiotic susceptibility profile of isolates was determined using the micro broth dilution method. Then, P. ovata extract was prepared and its effects on the expression of MDR K. pneumoniae genes were evaluated. Totally, 50 samples were collected from 50 patients (25 males and 25 females, 58 ± 2.2 years of age) with COVID-19 infection. Thirty K. pneumoniae strains, 4 K. oxytoca strains, 2 K. mobilis strains, and 2 strains of K. rhinoscleromatis were isolated here. Gentamicin and chloramphenicol did not affect the strains and piperacillin/tazobactam was the most effective antibiotic. CTX-M15, OXA-48, and OXA-181 genes were detected in 29 (96.6%), one (1.66%), and one (1.66%) K. pneumoniae strains, respectively. The minimum inhibitory concentration of P. Ovata was 3.125 μg/ml for the isolated bacteria, and the extract significantly downregulated OXA-48 and OXA-181 genes (p<0.005, CI=95%). P. ovata extract showed antibacterial effects on MDR species of clinically isolated K. pneomoniae. Downregulation of beta-lactamase enzyme-producing genes can be considered as the possible mechanism action of antibacterial effects of the plant.

Keywords

  1. Guisado-Gil AB, Infante-Domínguez C, Peñalva G, Praena J, Roca C, Navarro-Amuedo MD, et al. Impact of the COVID-19 pandemic on antimicrobial consumption and hospital-acquired candidemia and multidrug-resistant bloodstream infections. Antibiotics. 2020;9(11):816.
  2. García-Meniño I, Forcelledo L, Rosete Y, García-Prieto E, Escudero D, Fernández J. Spread of OXA-48-producing Klebsiella pneumoniae among COVID-19-infected patients: The storm after the storm. J Infect Public Health. 2021;14(1):50-2.
  3. Arteaga-Livias K, Pinzas-Acosta K, Perez-Abad L, Panduro-Correa V, Rabaan AA, Pecho-Silva S, et al. A multidrug-resistant Klebsiella pneumoniae outbreak in a Peruvian hospital: Another threat from the COVID-19 pandemic. Infect Control Hosp Epidemiol. 2021:1-2.
  4. Wyres KL, Lam MM, Holt KE. Population genomics of Klebsiella pneumoniae. Nature Rev Microbiol. 2020;18(6):344-59.
  5. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Evolution and epidemiology of multidrug-resistant Klebsiella pneumoniae in the United Kingdom and Ireland. MBio. 2017;8(1):e01976-16.
  6. Mofolorunsho KC, Ocheni HO, Aminu RF, Omatola CA, Olowonibi OO. Prevalence and antimicrobial susceptibility of extended-spectrum beta lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated in selected hospitals of Anyigba, Nigeria. African Health Sci. 2021;21(2):505-12.
  7. Nakamura-Silva R, Oliveira-Silva M, Furlan JPR, Stehling EG, Miranda CES, Pitondo-Silva A. Characterization of multidrug-resistant and virulent Klebsiella pneumoniae strains belonging to the high-risk clonal group 258 (CG258) isolated from inpatients in northeastern Brazil. Arch Microbiol. 2021:1-9.
  8. Projahn M, von Tippelskirch P, Semmler T, Guenther S, Alter T, Roesler U. Contamination of chicken meat with extended-spectrum beta-lactamase producing-Klebsiella pneumoniae and Escherichia coli during scalding and defeathering of broiler carcasses. Food Microbiol. 2019;77:185-91.
  9. Liu C, Guo J. Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Ann Clin Microbiol Antimicrob. 2019;18(1):1-11.
  10. Khosravi M, Mirzaie A, Kashtali AB, Noorbazargan H. Antibacterial, anti-efflux, anti-biofilm, anti-slime (exopolysaccharide) production and urease inhibitory efficacies of novel synthesized gold nanoparticles coated Anthemis atropatana extract against multidrug-resistant Klebsiella pneumoniae strains. Arch Microbiol. 2020;202:2105-15.
  11. Franco EAN, Sanches-Silva A, Ribeiro-Santos R, de Melo NR. Psyllium (Plantago ovata Forsk): From evidence of health benefits to its food application. Trends Food Sci Technol. 2020;96:166-75.
  12. Phan JL, Cowley JM, Neumann KA, Herliana L, O’Donovan LA, Burton RA. The novel features of Plantago ovata seed mucilage accumulation, storage and release. Sci Rep. 2020;10(1):1-14.
  13. Yin D, Guo Y, Li M, Wu W, Tang J, Liu Y, et al. Performance of VITEK 2, E-test, Kirby–Bauer disk diffusion, and modified Kirby–Bauer disk diffusion compared to reference broth microdilution for testing tigecycline susceptibility of carbapenem-resistant K. pneumoniae and A. baumannii in a multicenter study in China. Eur J Clinl Microbiol Infect Dis. 2021;40(6):1149-54.
  14. Elahi A, Akya A, Chegene Lorestani R, Ghadiri K, Baakhshii S. Molecular Typing of Klebsiella pneumoniae Isolated from Medical Centers in Kermanshah Using Pulse Field Gel Electrophoresis. Arch Pediatr Infect Dis. 2019;7(2).
  15. Yadav NS, Sharma S, Chaudhary DK, Panthi P, Pokhrel P, Shrestha A, et al. Bacteriological profile of neonatal sepsis and antibiotic susceptibility pattern of isolates admitted at Kanti Children’s Hospital, Kathmandu, Nepal. BMC Res Notes. 2018;11(1):1-6.
  16. Yelin I, Kishony R. Antibiotic resistance. Cell. 2018;172(5):1136-. e1.
  17. Montiel-Riquelme F, Calatrava-Hernández E, Gutiérrez-Soto M, Expósito-Ruiz M, Navarro-Marí JM, Gutiérrez-Fernández J. Clinical Relevance of Antibiotic Susceptibility Profiles for Screening Gram-negative Microorganisms Resistant to Beta-Lactam Antibiotics. Microorganisms. 2020;8(10):1555.
  18. Shin S, Jeong SH, Lee H, Hong JS, Park M-J, Song W. Emergence of multidrug-resistant Providencia rettgeri isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum β-lactamase causing a first outbreak in Korea. Ann Clin Microbiol Antimicrob. 2018;17(1):1-6.
  19. Banik BK. Beta-lactams: Novel synthetic pathways and applications: Springer; 2017.
  20. Motamedi H, Darabpour E, Gholipour M, Seyyednejad S. Antibacterial effect of ethanolic and methanolic extracts of Plantago ovata and Oliveria decumbens endemic in Iran against some pathogenic bacteria. Int J Pharmacol. 2010;6(2):117-22.
  21. Karami L, Ghahtan N, Habibi H. Antibacterial effect of plantago ovata and lallemantia iberica seed extracts against some bacteria. Res Mol Med. 2017;5(3):32-6.
  22. Seyyednejad S, Motamedi H. A review on native medicinal plants in Khuzestan, Iran with antibacterial properties. Int J Pharmacol. 2010;6(5):551-60.
  23. Sharma A, Verma R, Ramteke P. Antibacterial activity of some medicinal plants used by tribals against UTI causing pathogens. World Appl Sci J. 2009;7(3):332-9.
  24. Hassan G, Ghafoor S. Herbal Medicines: An Adjunct to Current Treatment Modalities for Periodontal Diseases. Biomedica. 2020;36(1).
  25. Zhu F. A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture. 2020;526:735422.

 

  1. Tlili H, Marino A, Ginestra G, Cacciola F, Mondello L, Miceli N, et al. Polyphenolic profile, antibacterial activity and brine shrimp toxicity of leaf extracts from six Tunisian spontaneous species. Nat Prod Res. 2021;35(6):1057-63.
  2. Ghotaslou R, Ghorashi Z, Nahaei M. Klebsiella pneumoniae In neonatal sepsis: a 3-year-study in the pediatric hospital of Tabriz Iran. Jpn J Infect Dis. 2007;60(2/3):126.
  3. Heidary M, Nasiri MJ, Dabiri H, Tarashi S. Prevalence of drug-resistant Klebsiella pneumoniae in Iran: a review article. Iran J Public Health. 2018;47(3):317.
  4. Gona F, Comandatore F, Battaglia S, Piazza A, Trovato A, Lorenzin G, et al. Comparison of core-genome MLST, coreSNP and PFGE methods for Klebsiella pneumoniae cluster analysis. Microb Genom. 2020;6(4).
  5. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother. 2009;53(8):3365-70.
  6. Tijet N, Sheth PM, Lastovetska O, Chung C, Patel SN, Melano RG. Molecular characterization of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae in Ontario, Canada, 2008-2011. PLoS One. 2014;9(12):e116421.
  7. Dedeic-Ljubovic A, Hukic M, Pfeifer Y, Witte W, Padilla E, López-Ramis I, et al. Emergence of CTX-M-15 extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates in Bosnia and Herzegovina. Clin Microbiol Infect. 2010;16(2):152-6.
  8. Christian NA, Roye-Green K, Smikle M. Molecular epidemiology of multidrug resistant extended spectrum beta-lactamase producing Klebsiella pneumoniae at a Jamaican hospital, 2000-2004. BMC Microbiol. 2010;10(1):1-8.