Document Type : Original Paper


1 1 Department of Marines Sciences, Basic Sciences group, Chabahar Maritime University, Chabahar, Islamic Republic of Iran 2 Department of Physics, University of Tafresh, Tafresh, Islamic Republic of Iran

2 3 Department of Mathematics, Faculty of Mathematics, University of Sistan & Baluchestan, Zahedan, Islamic Republic of Iran


In this paper, a quantum plasma system was considered to study a nonlinear turbulence model. The properties of nonlinear propagation of the solitary potential wave in two-dimensional heterogeneous quantum magnetoplasma were investigated using the quantum hydrodynamic model. It was assumed that in addition to the heterogeneity in this system, there is a magnetic field. If the collision frequency between the heavy particles (ions and neutral particles) is negligible, a nonlinear equation in two dimensions (2D), as well as the solutions of the plasma electrostatic potential, are obtained. For this purpose, the method of indeterminate coefficients, dimensionless conversion, travel wave conversion, etc. were used. A series of corresponding physical quantity properties was described by solving the individual solution of wave obtained for a quantum plasma system with a nonlinear model. The effects of the quantum Bohm potential on the single wave structure of the electrostatic potential are shown numerically in Figures 1 and 2. It was found that increasing the numerical density and amplitude of this wave decreases. The present study may play a significant role in understanding the properties of potential wave propagation in dense astrophysical plasma where quantum effects are useful.


Main Subjects

  1. Manfredi G. Fields Institute Communications. Plasmas. 2005;46:263-287.
  2. Stenflo L, Shukla P, Marklund M. New low-frequency oscillations in quantum dusty plasmas, EPL. 2006;74:844.
  3. El-Taibany W, Obliquely propagating low frequency electromagnetic shock waves in two dimensional quantum magnetoplasmas. Phys Plasma. 2007;14:42302.
  4. Shukla P, Stenflo L. Jeans instabilities in quantum dusty plasmas. Phys Lett A. 2006;355:378.
  5. Masood W, Mushtaq A. Effect of Bohm potential on magnetohydrodynamic wave propagation in dense quantum fluid plasmam. Int J Phys R. 2008;372:4283.
  6. Jung YD. Quantum-mechanical effects on electron–electron scattering in dense high-temperature plasmas. Phys Plasmas. 2001;8:3842.
  7. Masood W, Mushtaq A, Khan R. Linear and nonlinear dust ion acoustic waves using the two-fluid quantum hydrodynamic model. Phys Plasmas. 2007;14:123702.
  8. Khan S, Mushtaq A, Masood W. Dust ion-acoustic waves in magnetized quantum dusty plasmas with polarity effect. Phys Plasmas. 2008;15:013701.
  9. Markowich A, Ringhofer C, Schmeiser C. A steady state potential flow model for semiconductors. Springer, Vienna. 1990.
  10. Marklund M, Shukla P. Nonlinear collective effects in photon-photon and photon-plasma interactions. APS. 2006;78:591.
  11. Leontovich M, Modulational A. Instability of ion-acoustic wave envelopes in magnetized quantum electron-positron-ion plasmas. Izv Akad Nauk SSR Ser Fiz Mat Nauk. 1994;8:16.
  12. Agrawal G. Nonlinear Fibre Optics. Academic, San Diego. 1995.
  13. Abdelsalam U, Selim M. Ion-acoustic waves in a degenerate multicomponent magnetoplasma. J Plasma Phys. 2013;79:163.
  14. Moslem W, Abdelsalam U, Sabry R, Shukla P. Electrostatic structures associated with multicomponent magnetoplasma with stationary dust particles. New J Phys. 2010;12:073010.
  15. Khan S, Masood W, Siddiq M. Obliquely propagating dust-acoustic waves in dense quantum magnetoplasmas. Phys Plasmas. 2009;16:013701.
  16. Jung Y. Quantum-mechanical effects on electron-electron scattering in dense high-temperature plasmas. Phys Plasmas. 2001;8(8):3842–3844
  17. Kremp D, Bornath T, Bonitz M. Quantum kinetic theory of plasmas in strong laser fields. Phys Rev E. 1999;60(4):4725–4732.
  18. Shukla P, Mond M, Kourakis I, Eliasson B. Nonlinearly coupled whistlers and dust-acoustic perturbations in dusty plasmas. Phys Plasmas. 2005;12(12):124502.

19.Mujahid I, Seadawy A, Dianchen L. Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods. Mod Phys Lett A. 2018;33(32):1850183.

20.Abdelsalam U. Nonlinear dynamical properties of solitary wave solutions for Zakharov-Kuznetsov equation in a multicomponent plasma. Plasma Phys. Revista Mexicana de F´ ısica. 2021; 67: 1–7.

21.Abdelsalam U, Zobaer S, Ghazalb M, Fares M. Nonlinear Wave Solutions of Cylindrical KdV-Burgers Equation in Nonextensive Plasmas for Astrophysical Objects. Acta Physica Polonica A. 2020;137:1061.

22.Tamang J, Saha A. Dynamical properties of nonlinear ion-acousticwaves based on the nonlinear Schrodinger equation in a multi-pair nonextensive plasma. Z Naturforsch. A. 2020;75:687.

23.Zakharov V, Kuznetsov E. On three-dimensional solitons. Soviet Physics JETP. 1974;39:285.

24.Mushtaq A, Shah H. Nonlinear Zakharov-Kuznetsov equation for obliquely propagating two-dimensional ionacoustic solitary waves in a relativistic. rotating magnetized electron-positron-ion plasma. Phys Plasmas. 2005;12:072306.


25.Fan E. Extended tanh-function method and its applications to nonlinear equations. Phys Lett. A. 2000;277:212.

26.Wang M. Applicatian of homogeneous balance method to exact solutions of nonlinear equation in mathematical physics. Phys Lett. A. 1996;216:67.

27.Kundu A. Classical and quantum nonlinear integrable systems. Theory and application. 2003.

28.Wazwaz A. Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Commun. Nonlinear Sci Numer Simulat. 2012;17:491-495.

  1. Shukla P, Stenflo L. Important nonlinear excitations in plasma physics. Phys Lett. A. 2006;357:229.
  2. El-Taibany E, Miki Wadati. Nonlinear quantum dust acoustic waves in nonuniform complex quantum dusty plasma. Phys Plasmas. 2007;14:42302.

31.Masood W, Mirza A, Argis S. Ion acoustic shock waves in electron-positron-ion quantum. Phys Plasmas. 2008;15:103703.

  1. Xue J. Cylindrical dust acoustic waves with transverse perturbation. Phys Plasmas. 2003;10:3430.
  2. Xue J. Modulated zero-area solitary pulses: properties. Phys Lett. A. 2003;314:479.

34.Wazwaz A. The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations. Appl Math Comp. 2007;188:1467-1475.

35.Sirendaoerji T. New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov–Kuzentsov equation. Chin Phys. 2006;15(6):1143–1148.

36.Vinodh D, Asokan R. Kink and solitary wave solutions for the (3+1) dimensional Kadomtsev-Petviashvili equation. PJM. 2019;8:490–494.

37.Abdelwahed H, Sabry R, El-Rahman A. On the positron superthermality and ionic masses contributions on the wave behaviour in collisional space plasma. Adv Space Res. 2020;66:259.

38.Chowdhury N, Mannan A, Hasan M, Mamun A. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas. CHAOS. 2017;27:093105.

39.Ahmed N, Mannan A, Chowdhury N, Mamun A. Electrostatic rogue waves in double pair plasmas. Chaos. 2018;28:123107.

40Alama M, Talukderb M. Head-on Collision of IonAcoustic Solitary Waves with Two Negative Ion Species in Electron-Positron-Ion Plasmas and Production of Rogue Waves. Plasma Phys. R. 2019;45:871.

41.Masood W, Karim S, Shah A, and Siddiq M. Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma. Phys Plasmas. 2009;16.

42.Masood W. Drift ion acoustic solitons in an inhomogeneous 2-D quantum magnetoplasma. Phys Let. A. 2009;373:1455–1459.

43.Landau L, and Lifshitz E. Statistical Physics Oxford University Press. Oxford. 1980;1:167.

44.Barbu L, Morosanu G. Singularly Perturbed BoundaryValue Problems. Birkhauserm Verlag AG. Basel. 2007.