Document Type : Original Paper

Author

Faculty of Sciences, Department of Geology, Urmia University, Urmia, Islamic Republic of Iran

Abstract

One of the components of Gysian Silvana ophiolite in the south of Urmia and the continuation of the Neo-Tethys in the northwesthern of Iran is serpentinites with lizardite/chrysotile and magnetite phases as the main mineral and chromite (Cr-spinel) and some rare olivine and orthopyroxenes. A variety of microstructures such as mesh, sieve, lamellar, fibrous, and hourglass were identified. The existence of lizardite plates (001) crosswise in the margin of a low crystallized mass nucleus of net texture is determined by microstructures. Due to the lack of antigorite in the serpentinites, the depth of subduction of the Neo-Tethys slab in this part of Iran may be low. The crystal size distribution (CSD) of the Gysian serpentinite chromites was studied.  We discriminate three types of CSD patterns for chromite crystals, extract nucleation, and growth parameters from intercept and slope values of the patterns. The first type is a linear steady-state pattern with a nucleation rate/growth rate (J/G) of about 12 and Gt=1.28; the second type has a non-linear concave downtrend which is the result of annealing or Ostwald ripening at a small size part with J/G=13-15 and Gt=1.33. The third type is complex and shows nucleation density with two separate parts. It could be modeled by two crystal populations, small and large sizes overlapping linear patterns. The J/G for small crystals was twice for large sizes and multiple nuclei have less growth. The Gt was 1.60 for small and 1.10 for those large sizes. Assuming the constant crystal growth rate in silicate materials is 10-9 cm/s, the time for the growth of large chromites is six times longer than that of small crystals. These two segmental CSD patterns probably present arising processes or alteration production of mafic minerals as small chromites.  

Keywords

Main Subjects

  1. Alexeiev DV, Kröner A, Hegner E, Rojas-Agramonte Y. Middle to Late Ordovician arc system in the Kyrgyz Middle Tianshan: From arc-continent collision to subsequent evolution of a Paleozoic continental margin. Gondwana Res. 2016;39:261-291.
  2. Faure M, Lin W, Chu Y, Lepvrier C. Triassic tectonics of the southern margin of the South China Block. Comptes Rendus Geoscience. 2016;348(1):5-14.
  3. McCollom TM, Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks: Geochim Cosmochim Acta. 2009;73(3):856- 875.
  4. Frost BR, Evans KA, Swapp SM, Beard JS and Mothersole FE. The process of serpentinization in dunite from New Caledonia. Lithos. 2013;178:24–39.
  5. Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N, Petitgirard S. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science. 2007;318(5858):1910-1913.
  6. Hattori KH and Guillot S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology. 2003;31(6):525–528.
  7. Tatsumi Y. The subduction factory: how it operates in the evolving Earth. GSA Today. 2005;15(7):4.
  8. Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Géoscience. 2003;335:825–852.
  9. Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M. Seawater–peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochemistry, Geophysics, Geosystems. 2004;5(9):22.
  10. Modjarrad M. Geochemistry and crystal shape, size and spatial distribution in arc-related gabbro, Urmia, NW Iran. Geochimica Acta. 2022a; DOI: 10.1007/s11631-022-00557-8.
  11. Moazzen M, Modjarrad M. Contact metamorphism and crystal size distribution studies in the Shivar aureole, NW Iran. Geol J. 2005;40:499-517.
  12. Modjarrad M. Crystal size distribution of amphiboles from Bezow dacites, Urmia, Iran. Neues Jahrbuch Fur Geologie Und PalaontologieAbhandlungen. 2015;276:101-110.
  13. Modjarrad M, Sheykhbaglou S. Crystal size distribution of amphibole and plagioclase from Zanbil adakitic dacites, Urmia-Iran: Evidence for magma mixing and textural coarsening. Acta Geodynamic Geomaterials. 2016;181:89-101.
  14. Cashman KV, Ferry JM. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization III. Metamorphic crystallization. Contribut Mineral Petrol. 1988;99:410.
  15. Hajmolla Ali A, Shahrabi M. Geological map of Silvana, N. 4964. Geological Survey of Iran. 2006; Tehran.
  16. Sheikholeslami MR. Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan, Sanandaj–SirjanZone, Iran. J Asian Earth Sci. 2015;106:130-149.
  17. Alavi M. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci. 2004;304(1):1-20.
  18. Allen MB, Kheirkhah M, Emami MH, Jones SJ. Right-lateral shear across Iran and kinematic change in the Arabia—Eurasia collision zone. Geophysic J Int. 2011;184(2):555-574.
  19. Aziz H, Asahara Y. Juvenile granite in the Sanandaj–Sirjan Zone, NW Iran: Late Jurassic–Early Cretaceous arc–continent collision. Int GeolRev. 2013;55:1523-1540.
  20. Golonka J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics. 2004;381(1-4):235-273.
  21. Golonka J, Oszczypko N, Ślączka A. Late Carboniferous-Neogene geodynamic evolution and paleogeography of the circum-Carpathian region and adjacent areas. Ann Societat Geologorum Poloniae. 2000;70(2):107-136.
  22. Robertson AHF, Clift PD, Degnan PJ, Jones G. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography Palaeoclimatol Palaeoecol. 1991;87(1-4):289-343.
  23. Eren Rizeli M, Wang KL, Bingol AF, Beyarslan M. Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a fore arc setting. 13th International Conference on Gondwana to Asia, At: Trivandrum, India. 2016;22.
  24. Shafaii Moghadam H, Li QL, Stern RJ, Chiaradia M, Karsli O, Rahimzadeh B. The Paleogene Ophiolite Conundrum of the Iran-Iraq Border Region. J Geol Soc. 2020.
  25. Alizadeh A. Dating of the southern Urmia colored mélange. 30th symposium of Earth Sciences of Iran 2012; Tehran.
  26. Higgins MD. Measurement of crystal size distributions. Am Mineral. 2000;85:1105–16.
  27. Page BM, De Vito LA, Coleman RG. Tectonic emplacement of serpentinite southeast of San Jose,California. Int Geol Rev. 1999;41:494–505.
  28. Azer MK, Khalil AE S. Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, Central Eastern Desert, Egypt. J Afr Earth Sci. 2005;43(5):525-536.
  29. Francis GH. The serpentinite mass in Glen Urquhart, Invernessshire, Scotland. Am J Sci. 1956;254:201–226
  30. Hopkinson L, Beard JS and Boulter CA. The hydrothermal plumbing of a serpentinite-hosted detachment: Evidence from the West Iberia non-volcanic rifted continental margin. Marine Geol. 2004;204:301–315.
  31. Boudier F, Baronnet A, Mainprice D. Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite. J Petrol. 2009;51(1-2):495-512.
  32. Mohammadi N, Ahmadipour H, Peighambari S. Investigation of deformational behavior of serpentinites in Baft ophiolitic malange (Kerman) and its effects on the sesmic potential of the region. Iran J Geol. 2013;6(24):3-17.
  33. Reinen LA. Seismic and aseismic slip indicators in serpentinite gouge. Geology. 2000;28(2):135-138.
  34. O’Brien J, Rodgers KA. Alpine-type serpentinites from the Auckland Province—III. Petrography, mineralogy, petrochemistry, and petrogenesis. J Royal Soc New Zealand. 1974;4(2):141-159.
  35. Evans BW. The serpentinite multisystem revised: chrysotile is metastable. Int Geol Rev. 2004;46:479–506.
  36. Iyer K, Austrheim H, John T, Jamtveit B. Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite Complex, Norway. Chem Geol. 2008;249:66–90.
  37. Christensen NI. Serpentinites, peridotites, and seismology. Int Geol Rev. 2004;46(9):795-816.
  38. Viti C, Mellini M. Mesh textures and bastites in the Elba retrograde serpentinites. Eur J Mineral. 1998;10:1341–1359.
  39. Viti C, Collettini C, Tesei T, Tarling MS, Smith S. Deformation Processes, Textural Evolution and Weakening in Retrograde Serpentinites. Minerals. 2018;8:241.
  40. Roume´jon S, Cannat M, Pierre Agrinier P, Godard M, Andreani M. Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge (62–65-E). J Petrol. 2015;56(4):703-734.
  41. Bromiley GD, Pawley AR. The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high pressure stability. Am Mineral. 2003;88:99–108.
  42. Rezaie MDA, Modjarrad M (2018). The Ultramafic rocks of Silvana ophiolite. 25th symposium of crystallography and mineralogy of Iran. 2018; Yazd, Iran.
  43. Deschamps F, Godard M, Guillot S, Hattori K. Geochemistry of subduction zone serpentinites: A review. Lithos. 2013;178:96-127.

 

  1. Abdollah K, and Modjarrad M. Serpentinites of Ziveh Gysian south of Urmia, 3th international Congress of Earth Sciences of Iran. 2018; Tehran.
  2. Modjarrad M. Petrology of the Maku - Poldasht young lavas: Attitude to the olivine and bubbles sizedistribution. Appliesd Geochemistry (AAG), in press 2022b; (in Persian).
  3. Cashman KV. Crystal Size Distribution (CSD) Analysis of Volcanic Samples: Advances and Challenges. Front Earth Sci. 2020;8.
  4. Higgins MD. Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press. 2006; NewYork, 277p.
  5. Modjarrad M. Crystal size distribution studies on the leucite, pyroxene and olivine at the eastern Urmia Lake volcanic rocks- magma mixing possibility and residence time at the chamber. Iran J Crystallography Mineral. 2019;27:55-68 (in Persian).
  6. Marsh BD. On the interpretation of crystal size distributions in magmatic systems. J Petrol. 1998;39:553–600.