Document Type : Original Paper

Authors

Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Islamic Republic of Iran

Abstract

In this paper, a test particle model is developed to study the electron acceleration in a magnetized plasma-filled waveguide by a twisted electromagnetic wave with variable amplitude and phase along the longitudinal position. With appropriately assigned initial values, the electron total energy gain is obtained using numerical analysis without calculating the dispersion relation. Numerical results show that as long as the twisted electromagnetic waves significantly affect the electron acceleration, during the passage of an electron through the waveguide, one may employ an optimum value of the external magnetic field to obtain the maximum energy gain.

Keywords

Main Subjects

  1. Rubbia C. Inertial fusion a contribution of accelerator technology to the energy problem. Nucl Phys A. 1993; 553(375):22.
  2. Ivanov Y F. Pulsed electron-beam treatment of WC–TiC–Co hard-alloy cutting tools: wear resistance and microstructural evolution. Surface and Coatings Technology. 2000; 125(1):251-256.
  3. Hao S. Surface modification of steels and magnesium alloy by high current pulsed electron beam. Methods Phys B. 2005;240(3):646-952.
  4. Grisham L R, Kwan J W. Perspective on the role of negative ions and ion–ion plasmas in heavy ion fusion science, magnetic fusion energy, and related fields. Nucl Methods Phys A. 2009;606(1-2):83-88.
  5. Kase T, Harada H, Takahashi T. Transmutation of fission products with the use of an accelerator. Nucl Energy. 1995; 29:335-341.
  6. Sun Z, Karppi R. The application of electron beam welding for the joining of dissimilar metals: an overview. Journal of Materials Processing Technology. 1996;59(3): 257-267.
  7. Allen L, Beijersbergen M, Spreeuw R, Woerdman C. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:81-85.
  8. Hora H. Particle acceleration by superposition of frequency-controlled laser pulses. Nature. 1988; 333:337-338.

 

  1. Gashti M A, Jafari S. Electron acceleration based on a laser pulse propagating through a plasma in the simultaneous presence of a helical wiggler and an obliquely applied external magnetic field. The European Physical Journal Plus. 2016; 45(3):210.
  2. Mangles S, Walton B, Najmudin Z, Dangor A, Krushelnick K, Malka V, et al. Table-top laser-plasma acceleration as an electron radiography source. Laser Part Beams, 2006; 24(1):185-190.
  3. Gong Z, Mackenroth F, Wang T, Yan X Q, Toncian T, et al. Direct laser acceleration of electrons assisted by strong laser-driven azimuthal plasma magnetic fields. Phys Rev E. 2020; 102(013206):1-13.
  4. Iwata N, Sentoku Y, Sano T. Electron acceleration in dense plasmas heated by a picosecond relativistic laser. Nuclear Fusion. 2019; 086035 (59):1-11.
  5. Li F, Singh P, Palaniyappan S, Huang C. Particle resonances and trapping of direct laser acceleration in a laser-plasma channel. Phys Rev Accel Beams. 2021; 041301(24):1-8.
  6. Nobahar D, Hajisharifi K, Mehdian H. Twisted modes instability of electron–positron shell interacted with moving ion background. Laser and Particle Beams. 2017; 35(3):543-550.
  7. Jesacher A, Furhapter S, Bernet S, Ritsch M. Shadow effects in spiral phase contrast microscopy. Phys Rev Lett. 2005; 233902(94).
  8. Maurer C, Jesacher A, Bernet S, Ritsch M. What spatial light modulators can do for optical micros copy. Laser Photonics Rev. 2011;5(1):81-101.
  9. He H, Friese M, Heckenberg N, Rubinsztein H. Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity. Phys Rev Lett. 1995; 75(826).
  10. Grier D G. A revolution in optical manipulation. Nature 2003;424(6950):810-816.
  11. Vaziri M, Golshani M, Sohaily S, Bahrampour A. Electron acceleration by linearly polarized twisted laser pulse with narrow divergence. Physics of Plasmas. 2015; 033118(22).
  12. Shi Y, Blackman D, Stutman D, Arefiev A. Generation of Ultrarelativistic Monoenergetic Electron Bunches via a Synergistic Interaction of Longitudinal Electric and Magnetic Fields of a Twisted Laser. Phys Rev Lett. 2021; 234801(126).
  13. Krall N A, Trivelpiece A W. Principles of Plasma Physics. New York: Mc Graw-Hill; 1973.
  14. Kumar S, Yoon M. Electron dynamics and acceleration study in a magnetized plasma-filled cylindrical waveguide. Journal of Applied Physics. 2008; 023302(103):1-6.