Document Type : Original Paper

Authors

1 1 Department of Geology, faculty of science, Urmia University, Urmia, Islamic Republic of Iran

2 Department of Geological Engineering, Karadeniz Technical University, 61080 Trabzon, Türkiye

Abstract

In this paper, focused on the Late Cretaceous Serow ophiolite related gabbros from the Torshab area, NW Iran, to enhance our understanding on the tectonic setting of ophiolite formation in terms of pressure-temperature and fluid conditions. The applied methods encompassed field geological observations, petrographic and mineralogical analyses, and whole-rock chemistry assessments. The findings revealed that the calc-alkaline gabbros predominantly consist of hornblende gabbro, olivine gabbro, and minerals such as amphibole, ortho-/clinopyroxene, olivine, and plagioclase. According to geochemical signatures such as the depletion of high field strength elements (Hf, Zr, Nb, and Ta) and the enrichment of large ionic lithophile elements (Ba and K) the Serow-Torshab gabbro is considered in relation to an arc setting indicating their origin from a mantle wedge, potentially enriched by subducting crust-derived melts/fluids. The mineral chemical study on mafic phases also suggests a supra-subduction zone (SSZ, fore-arc) environment for the Serow ophiolite, offering valuable insights into the region's geodynamic evolution.

Keywords

Main Subjects

  1. Modjarrad M, Whitney DL, Omrani H. Petrologic evolution of the Gysian ophiolitic serpentinites, NW Iran. Acta Geochimica. 2024a; https://doi.org/10.1007/s11631-024-00682-6
  2. Modjarrad M, Moayyed M. Geochemistry of Central part of the NeoTethys Suture zone serpentinites (From NW Iran to Iraqi Zagros and Eastern Anatoly). Iranian Journal of Geology. 2024b;18 (69):49-66 (in Persian with English abstract).
  3. Moghadam HS, Li Q, Griffin W, Stern R, Santos J, Lucci F, Beyarslan M, Ghorbani G, Ravankhah A, Tilhac R. Prolonged magmatism and growth of the Iran-Anatolia Cadomian continental arc segment in Northern Gondwana. Lithos. 2021; 384, 105940.
  4. Saccani E, Allahyari K, Beccaluva L, Bianchini G. Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research. 2013; 24 (1):392–411.
  5. Putirka KD. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry. 2008; 69:61- 120.
  6. Heliker C. Inclusions in Mount St. Helens dacite erupted from 1980 through 1983. Journal of Volcanology and Geothermal Research. 1995; 66:115–135.
  7. Hickey-Vargas R, Abdollahi MJ, Parada MA, Frey FA. Crustal xenoliths from Calbuco volcano, Andean southern volcanic zone: implications for crustal composition and magma-crust interaction. Contributions to Mineralogy and Petrology. 1995; 119:331–344.
  8. Beard JS, Borgia A. Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica. Contributions to Mineralogy and Petrology. 1989; 103:110–122.
  9. Costa F, Dungan MA, Singer BS. Hornblende- and Phlogopitebearing gabbroic xenoliths from Volcan San Pedro (36 S), Chilean Andes: evidence for melt and fluid migration and reactions in subduction-related Plutons. Journal of Petrology. 2002; 43(2):219–241.
  10. Modjarrad M. Geochemistry and crystal shape, size and spatial distribution in arc-related gabbro, Urmia, NW Iran. Acta Geochimica. 2022; doi.org/10.1007/s11631-022-00557-8.
  11. Moghadam SH, Li QL, Stern RJ, Chiaradia M, Karsli O, Rahimzadeh B. The Paleogene Ophiolite Conundrum of the Iran-Iraq Border Region. Journal of the geological society of America. 2020; doi: https://doi.org/10.1144/jgs2020-009.
  12. Haghipour A, Aghanabati A. 1:250000 geological sheet of Serow. Geological survey of Iran. 1973; Tehran.
  13. Aghanabati A, Haghipour A. 1:100000 geological sheet of the Gangechin (Serow). Geological survey of Iran. 1990; Tehran.
  14. Berberian M, King GCP. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences. 1981; 18:210-265.
  15. Mazhari SA, Bea F, Amini S, Ghalamghash J, Molina JF, Montero MP, Scarrow J, Williams IS. The Eocene bimodal Piranshahr massif of the SSZ, NW Iran: a marker of the end of the collision in the Zagros orogen. Journal of the Geological Society. 2009; 166:53-69.
  16. Asadpour M, Pourmoafi SM, Heuss S. Geochemistry, petrology and U-Pb geochronology of Ghazan mafic-ultramafic intrusion, NW Iran. Petrology. 2013; 4 (14):1-16. (in Persian with English abstract).
  17. Rahimsuri Y. Mineralogy and Reserve Evaluation of Khanik-Gazan Titanium Placer Deposit, Urmia, Northwest Iran. New findings in applied geology. 2017; 11(22); 65-79.
  18. Whitney DL, Evans BW. Abbreviations for names of rock-forming minerals. American Mineralogist. 2010; 95(1):85-187.
  19. Deer WA, RA Howie, Zussman J. An Introduction to the Rock Forming Minerals, Seconded. – Longman Scientific and Technical. 1992; 696 pp.
  20. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youshi G. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. American Mineralogist. 1997; 82:1019–1037.
  21. Pearce JA, Reagan MK. Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Ti systematics. Geosphere. 2019; 15 (4):1008-1037.
  22. Pearce JA. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos. 2008; 100:1–4. https://doi.org/10.1016/j.lithos.2007.06.016
  23. Saccaini E. A new method of discriminating different type of post-Archen Ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosciences Frontiers. 2015; 6:481–501.
  24. McDonough WF, Sun SS, Ringwood AE, Jagoutz E, Hofmann AW. Potassium, rubidium, cesium in the Earth and Moon and the evolution of the Earth’s mantle. Geochimca et Cosmochimica Acta. 1992; 56:1001–1012.
  25. Beard JS. Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geological Society of America. 1986; 14:848–851.
  26. Vermeesch P. Tectonic discrimination diagrams revisited. Geochemistry Geophysics Geosystems. 2006; 7:1–55.
  27. Taylor SR, McLennan SM. The Continental Crust: Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford. 1985; 312p.
  28. Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Saunders AD, Norry MJ (Eds), (1989; 42:313–345). Magmatism in the Ocean Basins: Geological Society Special Publication. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
  29. Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR. Chemical characteristics of island-arc basalts: Implications for mantle sources. Chemical Geology. 1980; 30 (3):227-256. https://doi.org/10.1016/0009-2541(80)90107-2.
  30. Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research. 2000; 102:67–95.
  31. Rollinson H. Using geochemical data: evolution, presentation, interpretation. Longman Scientific and Technical Press, Harlow. 1995.
  32. Giret A, Bonin B, Leger JM. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Canadian Mineralogist. 1980; 18:481-495.
  33. Coltorti M, Bonadiman C, Faccini B, Ntaflos T, Siena F. Slab melt and intraplate metasomatism in Kapfenstein mantle xenoliths (Styria Basin, Austria. In: Coltorti M, Downes H, Piccardo GB (Eds), Melting, Metasomatism and Metamorphic Evolution in the Lithospheric Mantel. Lithos Special Issue. 2007; 94: 66–89.
  34. Beccaluva L, Macciotta GB, Piccardo Zeda O. Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chemical Geology. 1989; 77:165-182.
  35. Burns LE. The Border Ranges ultramafic and mafic complex, south central Alaska: cumulate fractionates of island arc volcanics. Canadian Journal of Earth Sciences. 1985; 22:1020-1038.
  36. Parlak O, Höck V, Delaloye M. The suprasubduction zone Pozantı-Karsantı ophiolite, southern Türkiye: evidence for high-pressure crystal fractionation of the ultramafic cumulates: Lithos. 2002; 65:205-224.
  37. Loucks RR. Discrimination of ophiolitic from nonophiolitic ultramafic- mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology. 1990; 18:346-349.
  38. Rezaii L, Moazzen M. Mineral chemistry of the ophiolitic peridotites and gabbros from the Serow area: Implications for tectonic setting and locating the Neotethys suture in NW Iran. Central European Geology. 2014; 57 (4):385–402. DOI: 10.1556/CEuGeol.57.2014.4.
  39. Bennett EN, Lissenberg CJ, Cashman KV. The signifcance of plagioclase textures in mid ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contributions to Mineralogy and Petrology. 2019; 174:49.
  40. Schweitzer EL, Papike JJ, Bence E. Statistical analysis of clinopyroxene from deep sea basalts. American Mineralogist. 1979; 64:501- 513.
  41. Anderson JL, Smith DR. The effect of temperature and oxygen fugacity on Al- inhornblende barometry. American Mineralogist. 1995; 80:549- 559.
  42. Kavassnes AJS, Strand HA, Moen Eikeland H, Pedersen RB. The Lyngen gabbro: the lower crust of Ordovician incipient arc. Contributions to Mineralogy and Petrology. 2004; 148:358- 379.
  43. Helz RT. Phase reactions of basalts in their melting range at PH2O=5kb as a function of oxygen fugacity. Journal of Petrology. 1973; 17:139–193.
  44. Schmidt MW. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the AI- in- hornblende barometer. Contributions to Mineralogy and Petrology. 1992; 110:304- 310.
  45. Ernst WG, Liu J. Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB; a semiquantitative thermobarometer. American Mineralogist. 1998; 83 (9-10):952–969.
  46. Seck HA. Koexistierende Alkalifeldspate and Plagioklase in system NaAlSi3O8-KAlSi3O8- CaAl2Si2O8 bei Temperaturen 650˚C bis 900˚C. Neues Jahrbuch fur Mineralogie Abhandlungen, 1971; 115:315- 34.
  47. Lindsley DH. Pyroxene geothermometry. American Mineralogist. 1983; 68:477- 493.

 

  1. Soesoo A. A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT-estimations. Geological Society of Sweden (Geologiska Föreningen). 1997; 119:55–6.
  2. Moazzen M, Bargoshadi MR, Yang TN. Early Cretaceous (Albian) intra-oceanic subduction in northern branch of Neotethys in NW Iran: U–Pb geochronology and geochemistry of ophiolitic metagabbros from the Chaldoran area. Geological Journal. 2020; 1–20. DOI: 10.1002/gj.4018.
  3. Modjarrad M. Mineral chemistry and geochemistry of trace and rare earth elements in the ultramafic rocks of west of Maku. Iranian Geological Journal. in press; (in Persian with English abstract).