Fusion Reactivity of Plasma with Anisotropic Lorentzian Distribution

Document Type : Original Paper

Authors

1 1 Department of Physics, Faculty of Science, Arak University, Arak, Islamic Republic of Iran

2 2 Department of Atomic and Molecular Physics, Faculty of Physics, Alzahra University, Tehran, Islamic Republic of Iran

Abstract

Anisotropic distributions and deviations from velocity equilibrium play a crucial role in plasma physics and nuclear fusion processes. The emergence of high-energy tails in non-equilibrium distributions increases the population of energetic particles, thereby enhancing the probability of quantum tunneling and, consequently, fusion reaction rates. In this work, we investigate how the velocity-space anisotropy and deviations from the equilibrium affect the optimization of the fusion yield. Specifically, we analyze non-Maxwellian distribution models, including kappa and anisotropic kappa distributions, to evaluate their impact on fusion reactivity. Our results show that anisotropic distributions outperform isotropic ones at lower temperatures, whereas isotropic distributions dominate at higher temperatures. These findings provide new insights for the design of fusion devices and contribute to improving the efficiency of fusion processes.

Keywords

Main Subjects

  1. Luo L, Ma M, Yang Y, Zhao H. Case Report: Genetic 1. Borhanian J, Shahmansouri M. Spherical electron acoustic solitary waves in plasma with suprathermal electrons. Astrophys Space Sci. 2012;342:401.
  2. Shahmansouri M, Borhanian J. Spherical Kadomtsev–Petviashvili solitons in a suprathermal complex plasma. Commun Theor Phys. 2013;60:227.
  3. Shahmansouri M, Tribeche M. Large amplitude dust ion acoustic solitons and double layers in dusty plasmas with ion streaming and high-energy tail electron distribution. Commun Theor Phys. 2014;61:377.
  4. Ainejad H, Mahdavi M, Shahmansouri M. Effects of superthermal electrons and negatively (positively) charged dust grains on dust-ion acoustic wave modulation. Eur Phys J Plus. 2014;129(5):99.
  5. Shahmansouri M, Tribeche M. Dust acoustic shock waves in suprathermal dusty plasma in the presence of ion streaming with dust charge fluctuations. Astrophys. Space Sci. 2013;343:251.
  6. Bethe HA. Energy production in stars. Phys Rev. 1939;55(5):434–56. doi:10.1103/PhysRev.55.434.
  7. Bethe HA, Critchfield CL. The formation of deuterons by proton combination. Phys Rev. 1938;54(4):248–54. doi:10.1103/physrev.54.248.
  8. Calió F, Gautschi W, Marchetti E. On computing Gauss-Kronrod quadrature formulae. Math Comput. 1986;47(176):639–50.
  9. Crilly AJ, Appelbe BD, Mannion OM, Taitano W, Chittenden JP. Constraints on ion velocity distributions from fusion product spectroscopy. Nucl Fusion. 2022;62(12):126015.
  10. Daniel HP, Moya PS, Zenteno-Quinteros B, Colmenares GA. Magnetic spectra comparison for kappa-distributed whistler electron fluctuations. Astrophys J. 2024;970(1):132.
  11. Eddington AS. The internal constitution of the stars. Science. 1920;52(1341):233–40.
  12. Hendry J, Lawson J. Fusion research in the UK 1945–1960. AEA Technology; 1993.
  13. Kolmes EJ, Mlodik ME, Fisch NJ. Fusion yield of plasma with velocity-space anisotropy at constant energy. Princeton University, Department of Astrophysical Sciences; 2021.

 

  1. Li K, Liu ZY, Yao YL, Zhao ZH, Dong C, Li D, et al. Modification of the fusion energy gain factor in magnetic confinement fusion due to plasma temperature anisotropy. Nucl Fusion. 2022;62(12):126015.
  2. Miyamoto K. Plasma physics for controlled fusion. Berlin Heidelberg: Springer-Verlag; 2016.
  3. Yang S, et al. Tailoring tokamak error fields to control plasma instabilities and transport. Nat Commun. 2024;15:1275. doi:10.1038/s41467-024-45454-1.
  4. Nimtz G, Clegg B. Compendium of quantum physics. Berlin: Springer; 2009. p. 799–802. ISBN 978-3-540-70622-9.
  5. Onofrio R, Sundaram B. Relationship between nonlinearities and thermalization in classical open systems: The role of the interaction range. Phys Rev E. 2024;101(1):123–34.
  6. Ourabah K. Reaction rates in quasiequilibrium states. Phys Rev E. 2024;111:034115.
  7. Rebut P-H. The JET preliminary tritium experiment. Plasma Phys Control Fusion. 1992;34(13):1749–58. doi:10.1088/0741-3335/34/13/002.
  8. Smirnov VP. Tokamak foundation in USSR/Russia 1950–1990. Nucl Fusion. 2009;50(1):014003. doi:10.1088/0029-5515/50/1/014003.
  9. Squarer BI, Presilla C, Onofrio R. Enhancement of fusion reactivities using non-Maxwellian energy distributions. Phys Rev E. 2024;101(1):123–34.
  10. Livadiotis G, Nicolaou G, Allegrini F. Anisotropic kappa distributions. I. Formulation based on particle correlations. Astrophys J. 2021;253:16.
  11. Shahmansouri M, Lee MJ, Jung YD. Anisotropic temperature effects on Landau damping in Kappa-Maxwellian astrophysical plasmas. Astropart Phys. 2020;130:102449. doi:10.1016/j.astropartphys.2020.102449.
  12. Atkinson RdE, Houtermans FG. Zur Frage der Aufbaumöglichkeit der Elemente in Sternen. Z Phys. 1929;54(9–10):656–65. doi:10.1007/BF01341595.
  13. Xie H. Efficient framework for solving plasma waves with arbitrary distributions. Phys. Plasmas 2025;32:060702.
  14. Nerney EG. Diffusive equilibrium: Modeling anisotropic Maxwellian and Kappa field line distributions in Io’s plasma torus using multi-fluid and kinetic approaches. J Geophys Res Space Phys. 2025. doi:10.22541/essoar.175009109.95959011/v1
  15. Bosch HS, Hale, GM. Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 1992;32:611.