Expedient Catalytic Access to Geraniol Epoxide Using a New Vanadium Schiff Base Complex on Modified Magnetic Nanoparticles

Document Type: Final File


Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University P.O.Box 1993891176, Vanak, Tehran, Islamic Republic of Iran


The Fe3O4@SiO2@APTMS@Glu-His@V complex was prepared with modification of iron oxide magnetic nanoparticles with (3-aminopropyl) trimethoxysilane (APTMS) and glutaraldehyde-L-histidine Schiff base followed by complexation with VOSO4. Characterization of the Fe3O4@SiO2@APTMS@Glu-His@V complex was carried out by means of FTIR, XRD, SEM, EDX, TEM, AAS and VSM techniques. It was found that Fe3O4@SiO2@APTMS@Glu-His@V complex successfully catalyze the epoxidation of allyl alcohols with tert-butylhydroperoxide (TBHP) in moderate to high yields. The epoxidation of geraniol with 100 % conversion and 100% selectivity within 15 min is remarkable. Short reaction time, high activity, selectivity, stability, reusability and easily magnetic separation of the catalyst with no leaching during the course of reactions are some advantages of this research.


1. Gupta K.C., Kumar Sutar A. Catalytic activities of Schiff base transition metal Complexes, Coord. Chem. Rev. 252: 1420–1450 (2008).

 2. Maurya M. R., Development of the coordination chemistry of vanadium through bis (acetylacetonato) oxovanadium(IV): synthesis, reactivity and structural aspects, Coord. Chem. Rev. 237: 163-181(2003).

 3. Licini G., Conteb V., Coletti A., Mbaa M., Zontaa C. Recent advances in vanadium catalyzed oxygen transfer reactions, Coord. Chem. Rev. 255:2345– 2357 (2011).

 4. Pillai S.- L., Subramanian S.-P., Kandaswamy M. A novel insulin mimetic vanadium flavonol complex: Synthesis, characterization and in vivo evaluation in STZ-induced rats, Europ. J. Medicinal. Chem.63: 109-117(2013).

 5. Sanna D., Micera G., Garribba E. On the Transport of vanadium in blood serum, Inorg Chem, 52: 11975−11985 (2013).

 6. Rehder D. Biological and medicinal aspects of vanadium, J. Inorg. Biochem. 80:81(2003).

 7. Van de Velde F., Arends I. W.C.E., Sheldon R.A. Biocatalytic and biomimetic oxidations with Vanadium. Inorg Chem Commun 6: 604–617(2000).

 8. Maurya R.C., Rajput S. Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: synthesis, characterization and 3D molecular modeling and analysis of some oxovanadium(IV) complexes involving the O, N-donor environment of pyrazolone-based sulfa drug Schiff bases. J Mol Struc794:24–34 (2006).

 9. Pessoa J.C., Etcheverry S, Gambino D Vanadium compounds in medicine Coord. Chem. Rev. 301- 302: 24-48 (2015).

 10. Jia Y., Lu L., Zhu M., Yuan C., Xing S., Fu X.A. dioxidovanadium (V) complex of NNO-donor Schiff base as a selective inhibitor of protein tyrosine phosphatase 1B:

 synthesis, characterization, and biological activities Europ J Med Chem 128: 287-292(2017).

 11. Martins M.D.R.S., Atima M. F. Vanadium complexes: Recent progress in oxidation Catalysis, Coord. Chem. 301–302:200–239 (2015).

 12. Cornman C.R., Zovinka E.P., Meixner M.H. Vanadium (IV) complexes of an active site peptide of a protein tyrosine phosphatase, Inorg. Chem. 34:5099-5100 (1995).

 13. Chatt J., Dilworth J. R., Richards R. L. Recent Advances in the Chemistry of Nitrogen Fixation. Chem. Rev. 78:589-625 (1978).

 14. Crans D.C., Smee J.J., Gaidamauskas E., Yang L.Q. The Chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 104: 849-902 (2004).

15. Thompson K.H., McNeill J.H., Orvig CVanadium Compounds as Insulin Mimics. Chem. Rev. 99: 2561-2572 (1999).

16. Tasiopoulos A.J., Troganis A.N., Evangelou A., Raptopoulou C.P., Terzis A., Deligiannakis Y., Kabanos T.A. Synthetic analogues for oxovanadium(IV)–glutathione interaction: an EPR, synthetic and structure study of oxovanadium(IV) compounds with sulfhydryl containing pseudopeptides and dipeptides. Chem. Eur. J. 5: 910-921(1999).

17. Schneider CJ, Penner-Hahn JE, Pecoraro VL. Elucidating the Protonation Site of Vanadium Peroxide Complexes and the Implications for Biomimetic Catalysis. J Am Chem Soc 130: 2712-2713 (2008).

18. Ligtenbarg AGJ, Hage R, Feringa Ben L. Catalytic oxidations by vanadium Complexes, Coord. Chem. Rev. 237: 89-101 (2003).

19. Gupta KC, Sutar AK, lin CP (2009) Polymer-supported Schiff base complexes in oxidation reactions. Coord. Chem. Rev. 253: 1926–1946.

20. Yang Y, Zhang Y, Hao S, Guan J, Ding H, Shang F, Qiu P, Kan Q. Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Appl Catal A 381: 274–281 (2010).

21. Maurya M R, Kumarb A, Costa Pessoab J. Vanadium complexes immobilized on solid supports and their use as catalysts for oxidation and functionalization of alkanes and alkenes, Coord. Chem. Rev. 255: 2315– 2344 (2011).

22. Hu S., Liu D., Wang C., Chen Y., Guo., Borgna A., Yang Y. Liquid-phase epoxidation of trans stilbene and cis-cyclooctene over vanadium-exchanged faujasite zeolite catalyst Appl Catal A 386: 74–82 (2010).

23. Maurya MR, Bisht M., Chaudhary N., Avecilla F., Kumar U., Hsu H.F. Synthesis, structural characterization, encapsulation in zeolite Y and catalytic activity of an oxidovanadium(V) complex with a tribasic pentadentate ligand. Polyhedron 54:180–188 (2013).

24. Modi CK., Chudasama J.A., Nakum H.D., Parmar D.K., Patel A.L. Catalytic oxidation of limonene over zeolite-Y entrapped oxovanadium (IV) complexes as heterogeneous catalysts. J Mol Catal A Chem 395: 151–161(2014).

25. Zamanifar E., Farzaneh F. Immobilized vanadium amino acid Schiff base complex on Al- MCM-41as catalyst for the epoxidation of allyl alcohols, React Kinet, Mech Catal. 104:197– 209 (2011).

 26. Yaul A.R., Pethe G.B., Aswar A.S. Russ J Coord Chem 36: 254–258 (2010).

 27. Sharpless KB, T.R. Verhoeven Metal-catalyzed, highly selective oxygenations of olefins and acetylenes with tert-butyl hydroperoxide. Practical considerations and mechanisms. Aldrichim. Acta 12: 63–74(1979).

 28. Masteri-Farahani M., Modarres M. Wells-Dawson heteropoly acid immobilized Inside the nanocages of SBA-16 with ship-in-a-bottle method: A new recoverable catalyst for the epoxidation of olefins, J. Mol. Catal. A: 417:81-88 (2016).

 29. Ooi Y.K., Yuliati L., Hartanto D., Nur H., Lee S.L. Mesostructured TUD-C supported molybdena doped titania as high selective oxidative catalyst for olefins epoxidation at ambient condition, Micropor Mesopor Mater 225: 411–420 (2016).

 30. M. Lin, C. Xia, B. Zhu, H. Li, X. Shu, Green and efficient epoxidation of propylene with hydroge peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: A 1.0 kt/a pilot-scale study, Chem Engin J 295: 370–375 (2016).

 31. Masteri-Farahani M., Niakan M. Heterogenization of peracids onto the MCM-41 and SBA-16 mesoporous materials for the epoxidation of cyclooctene. Mater Chem Phys 195: 74-81(2017).

 32. Mavrogiorgou A., Baikousi M., Costas V., Mouzourakis E., Deligiannakis Y., Karakassides M.A., Louloudi M. Mn-Schiff base modified MCM-41, SBA-15 and CMK-3 NMs as single-site heterogeneous catalysts: Alkene epoxidation with H2O2 incorporation, J. Mol. Catal. A: 413: 40–55(2016).

 33. Andrade A.L., Souza D.M., Pereira M. C., Fabris J. D. Domingues R. Z. Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach. Cerâmica 55: 420-424 (2009).

 34. Liu X., Ma Z., Xing J., Liu H. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J Magn Magn. Mater 270: 1–6 (2004).

 35. Sahooa P.C., Janga Y.N., Leea S. W., Immobilization of carbonic anhydrase and an artificial Zn(II) complex on a magnetic support for biomimetic carbon dioxide sequestration. J. Mol. Catal. B 82:37– 45(2012).

 36. Farzaneh F., Rashtizadeh E., A new Cu Schiff base complex with histidine and glutaraldehyde immobilized on modified iron oxide nanoparticles as a recyclable catalyst for the oxidative homocoupling of terminal alkynes, J Iran Chem Soc 13:1145–1154(2016).

37. Farzaneh F., Sadeghi Y. Immobilized V-MIL-101 on modified Fe3O4 nanoparticles as heterogeneous catalyst for epoxidation of allyl alcohols and alkenes. J. Mol. Catal. A 398: 275–281 (2015).

 38. Hamidipour L, Farzaneh F. Immobilized VOsalpr on modified Fe3O4nanoparticles as a magnetically separable epoxidation catalyst. CR Chimie,17: 927-933(2014).

 39. Hamidipour L, Farzaneh F, Ghandi M. Immobilized Co(acac)2 on modified Fe3O4 nanoparticles as a magnetically separable epoxidation catalyst. Reac Kinet Mech Catal 107:421- 433(2014).

 40. Asgharpour Z., Farzaneh F., Abbasi A. Synthesis, characterization and immobilization of a new cobalt (II) complex on modified magnetic nanoparticles as catalyst for epoxidation of alkenes and oxidation of activated alkanes. RSC Adv 6: 95729- 95739(2016).

41. Dorbes S, Pereira C, Andrade M, Barros D, Pereira AM, Rebelo SLH, Araújo JP, Pires J, Carvalho AP,Freire COxidovanadium(IV) acetylacetonate immobilized onto CMK-3 for heterogeneousepoxidation of geraniol, Micropor. Mesopor. Mater. 160: 67-74 (2012).

42. Conte V., Di Furia F., Licini G., Liquid phase oxidation reactions by peroxides in th presence of vanadium complexes. Appl Catal A 157:335–361(1997).