1. Stout D. M., Meyers A. I. Recent Advances in the Chemistry of Dihydropyridines. Chem. Rev., 82: 223–243 (1982).
2. Vo D., Matowe W.C., Ramesh M., Iqbal N., Wolowyk M.W., Howlett S.E., Knaus E.E., Syntheses, calcium channel agonist-antagonist modulation activities, and voltage-clamp studies of isopropyl 1, 4-dihydro-2, 6-dimethyl-3-nitro-4-pyridinylpyridine-5-carboxylate racemates and enantiomers. J. Med. Chem. 38: 2851-9 (1995).
3. Boecker R.H., Guengerich F.P., Oxidation of 4-aryl-and 4-alkyl-substituted 2, 6-dimethyl-3, 5-bis (alkoxycarbonyl)-1, 4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J. Med. Chem. 29:1596-603 (1986).
4. Yokoyama A., Nishiyama I., Yoshizawa A., 6-alkyl-2-(4-alkyloxyphenyl) quinoline: A new smectic C base material. Ferroelectric. 148:139-45 (1993).
5. Xi J. B., Fang Y. F., Frett B., Zhu M. L., Zhu T., Kong Y. N., Guan F. J., Zhao Y., Zhang X. W., Li H.Y., Ma M.-L., Hu W., Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities Eur. J. Med. Chem. 126: 1083-1106 (2017).
6. Kumar S., Das S.K., Dey S., Maity P., Guha M., Choubey V., Panda G., Bandyopadhyay U., Antiplasmodial activity of [(aryl) arylsulfanylmethyl] pyridine. Antimicrob. Agents Chemother. 52:705-15 (2008).
7. Mohamed L.W., Shaaban M.A., Zaher A.F., Alhamaky S.M., Elsahar A.M., Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities Bioorg. Chem. 83: 47-54 (2019).
8. Chitti S., Singireddi S., Santosh Kumar Reddy P., Trivedi P., Bobde Y., Kumar C., Rangan K., Ghosh B., Sekhar K.V.G.C., Design, synthesis and biological evaluation of 2-(3,4-dimethoxyphenyl)-6(1,2,3,6-tetrahydropyridin-4-yl)imidazo[1,2-a]pyridine analogues as antiproliferative Agents Bioorg. Med. 29: 2551-2558 (2019).
9. El-Gohary N.S., Gabr M.T., Shaaban M.I., Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents Bioorg. Chem. 89: 102976 (2019).
10. Eynde J-J.V., D'Orazio R., Van Haverbeke Y. Potassium permanganate, a versatile reagent for the aromatization of Hantzsch 1, 4-dihydropyridines. Tetrahedron. 50:2479-84 (1994).
11. Cai X. H., Yang H. J., Zhang G. L. Aromatization of 1, 4-dihydropyridines with selenium dioxide. Can. J. Chem. 83:273-5 (2005).
12. Zeynizadeh B., Dilmaghani K.A., Roozijoy A. Oxidative‐Aromatization of Hantzsch Ester 1, 4‐Dihydropyridines by KBrO3/SnCl4· 5H2O Under Mild Condition. Synth. Commun. 35:557-62 (2005).
13. Ko K-Y., Kim J-Y. Aromatization of Hantzsch 1, 4-dihydropyridines with Magtrieve™. Tetrahedron Lett. 40:3207-8 (1999).
14. Hashemi M.M., Ahmadibeni Y., Ghafuri H. Aromatization of Hantzsch 1, 4-dihydropyridines by hydrogen peroxide in the presence of cobalt (II) acetate. Monatsh. Chem. 134:107-10 (2003).
15. Chavan S.P., Kharul R.K., Kalkote U.R., Shivakumar I. An efficient Co (II) catalyzed auto oxidation of 1, 4-dihydropyridines. Synth. Commun. 33:1333-40 (2003).
16. Eynde J. J.V., Mayence A., Maquestiau A. A novel application of the oxidizing properties of pyridinium chlorochromate: aromatization of Hantzsch 1, 4-dihydropyridines. Tetrahedron. 48:463-8 (1992).
17. Sharbatdaran M., Foruzin L.J., Farzaneh F. and Larijani M.M. Synthesis and characterization of Si-Zr-Mo nanocomposite as a rapid and efficient catalyst for aromatization of Hantzsch 1, 4-dihydropyridines. C.R. Chim., 16:176-182 (2013).
18. Mao Y. Z., Jin M. Z., Liu Z. L., Wu L. M. Oxidative reactivity of S-nitrosoglutathione with Hantzsch 1, 4-dihydropyridine. Org. Lett. 2:741-2 (2000).
19. Itoh T., Nagata K., Okada M., Ohsawa A. The aromatization of Hantzsch dihydropyridines with nitric oxide (NO). Tetrahedron Lett. 36:2269-72 (1995).
20. Dzhemilev U., Yakupova A., Minsker S., Tolstikov G. New method for dehydrogenation of 1, 4-dihydropyridines to pyridines using homogeneous complex palladium catalysts. Bull. Acad. Sci. USSR, Div. Chem. Sci. 27:585-7 (1978).
21. Anniyappan M., Muralidharan D., Perumal P.T. A novel application of the oxidizing properties of urea nitrate and peroxydisulfate-cobalt (II): aromatization of NAD (P) H model Hantzsch 1, 4-dihydropyridines. Tetrahedron. 58:5069-73 (2002).
22. Mirza-Aghayan M., Boukherroub R., Nemati M., Rahimifard M. Graphite oxide mediated oxidative aromatization of 1, 4-dihydropyridines into pyridine derivatives. Tetrahedron Lett. 53:2473-5 (2012).
23. Jia X., Yu L., Huo C., Wang Y., Liu J., Wang X. Catalytic aromatization of 1, 4-dihydropyridines by radical cation salt prompted aerobic oxidation. Tetrahedron Lett. 55:264-6 (2014).
24. Saikh F., De R., Ghosh S. Oxidative aromatization of Hantzsch 1, 4-dihydropyridines by cupric bromide under mild heterogeneous condition. Tetrahedron Lett. 55:6171-4 (2014).
25. Chen Z.Y., Zhang W. Oxidative aromatization of Hantzsch 1, 4-dihydropyridines by aqueous hydrogen peroxide–acetic acid. Chinese Chemical Lett. 18:1443-6 (2007).
26. Kumar A., Maurya R.A., Sharma S. Oxidative aromatization of 1, 4-dihydropyridines and pyrazolines using HbA–H2O2: An efficient biomimetic catalyst system providing metabolites of drug candidates. Bioorganic & Medicinal Chemistry Lett. 19:4432-6 (2009).
27. Kumar P., Kumar A., Hussain K. Iodobenzene diacetate (IBD) catalyzed an quick oxidative aromatization of Hantzsch-1, 4-dihydropyridines to pyridines under ultrasonic irradiation. Ultrason. Sonochem. 19:729-35 (2012).
28. Shaikh A.C., Chen C. Facile and efficient aromatization of 1, 4-dihydropyridines with M (NO3) 2· XH2O, TNCB, TBAP and HMTAI and preparation of deuterium labeled dehydronifedipine from nifedipine-d3. Bioorg. Med. Chem. Lett. 20:3664-8 (2010).
29. Filipan-Litvić M., Litvić M., Vinković V. An efficient, metal-free, room temperature aromatization of Hantzsch-1, 4-dihydropyridines with urea–hydrogen peroxide adduct, catalyzed by molecular iodine. Tetrahedron. 64:5649-56 (2008).
30. Zhai C., Zhao Q., Gu K., Xing D., Zhang M., Ultra-fast response and recovery of triethylamine gas sensors using a MOF-based ZnO/ZnFe2O4structures J. Alloys Compd. 784: 660-67 (2019).
31. Zheng J., Cui X., Yang Q., Ren Q., Yang Y., Xing H., Ultra-fast response and recovery of triethylamine gas sensors using a MOF-based ZnO/ZnFe2O4 structures Chem. Eng. J. 354: 1075-82 (2018).
32. Harding J.L., Reynolds MM. Metal organic frameworks as nitric oxide catalysts. J. Am. Chem. Soc. 134:3330-3 (2012).
33. Manjunathan P., Marakatti V.S., Chandra P., Kulal A.B., Umbarkar S.B., Ravishankar R., Shanbhag G.V., Mesoporous tin oxide: An efficient catalyst with versatile applications in acid and oxidation catalysis Catal. Today 309: 61-76 (2018).
34. Joharian M., Morsali A., Ultrasound-assisted synthesis of two new Fluorinated Metal−Organic Frameworks (F-MOFs) with the high surface area to improve the catalytic activity J. Solid State Chem. 270: 135-46 (2019).
35. Zhu C., Mao Q., Li D., Li C., Zhou Y., Wu X., Luo Y., Li Y., A readily available urea based MOF that act as a highly active heterogeneous catalyst for Friedel-Crafts reaction of indoles and nitrostryenes Catal. Commun. 104: 123-27 (2018).
36. Noor T., Zaman N., Nasir H., Iqbal N., Hussain Z., Electro catalytic study of NiO-MOF/rGO composites for methanol oxidation reaction Electrochim. Acta
307: 1-12 (2019).
37. Guo F., A novel 2D Cu(II)-MOF as a heterogeneous catalyst for the cycloaddition reaction ofepoxides and CO2 into cyclic carbonates J. Mol. Struct. 1184: 557-61 (2019).
38. Azad M., Rostamizadeh S., Nouri F., Estiri H., Fadakar Y., Pd Nanoparticles at N-heterocyclic Carbene at ZIF-8 as an Ultrafine, Robust and Sustainable Heterogeneous System for Suzuki-Miyaura Cross Coupling processes Mater. Lett. 236:757-60 (2019).
39. Ezugwu C.I., Mousavi B., Asraf M.A., Luo Z., Verpoort F., Post-synthetic modified MOF for Sonogashira cross-coupling and Knoevenagel condensation reactions J. Catal. 344: 445-54 (2016).
41. Farzaneh F., Asgharpour z. Nickel-Chitosan Hybrid as a Precursor for Nickel Oxide Nanoporous Particles for Organic Dyes Photodegredation. J. Sci. I. R. 25:110-8 (2014).
42. Du K., Hao M., Li Z., Hong W., Liu J., Xiao L., Zou S., Kobayashi H., Fan J., Tuning catalytic selectivity of propane oxidative dehydrogenation via surface polymeric phosphate modification on nickel oxide nanoparticles Chin. J. Catal. 40: 1057-62 (2019).
43. Gallon H.J., Tu X., Twigg M.V., Whitehead J.C. Plasma-assisted methane reduction of a NiO catalyst—low temperature activation of methane and formation of nanofibres. Appl. Catal., B 106:616-20 (2011).
44. Gao C., Liu S., Xie L., Sun C., Cao J., Ren Y., et al. Rational design microporous pillared-layer frameworks: syntheses, structures and gas sorption properties. Cryst. Eng. Comm. 11:177-82 (2009).
45. Zolfigol M.A., Safaiee M. Synthesis of 1, 4-dihydropyridines under solvent-free conditions. Synlett. 2004:0827-8 (2004).
46. Zhang F., Li Z., Ge T., Yao H., Li G., Lu H., et al. Four novel frameworks built by imidazole-based dicarboxylate ligands: hydro (solvo) thermal synthesis, crystal structures, and properties. Inorg. Chem. 49:3776-88 (2010).
47. Han D., Yang H., Shen C., Zhou X., Wang F. Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion. Powder Technol. 147:113-6 (2004).
48. Paul S., Sharma S., Gupta M., Choudhary D. and Gupta R. Oxidative Aromatization of Hantzsch 1, 4-Dihydropyridines by SiO2/P2O5-SeO2 under Mild and Heterogeneous Conditions. Bull. Korean Chem. Soc., 28: 336-338(2007).
49. Sanchez L.M., Sathicq A.G., Romanelli G.P., González L.M. and Villa A.L. Activity of immobilized metallic phthalocyanines in the multicomponent synthesis of dihydropyridine derivatives and their subsequent aromatization. J. Mol. Catal., 435:1-12 (2017).
50. Liao X., Lin W., Lu J. and Wang C., Oxidative aromatization of Hantzsch 1, 4-dihydropyridines by sodium chlorite. Tetrahedron Lett., 51: 3859-3861 (2010).