Document Type : Original Paper

Authors

1 Department of Mathematics, Faculty of Mathematics, University of Tehran

2 Department of Mathematics, Payame Noor University, Tehran, Iran

Abstract

The purpose of this paper is the study of direct limits in category of Krasner (m, n)-hyperrings. In this regards we introduce and study direct limit of a direct system in category (m, n)-hyperrings. Also, we consider fundamental relation , as the smallest equivalence relation on an (m, n)-hyperring R such that the quotient space is an (m, n)-ring, to introduce the fundamental functor from category of Krasner (m, n)-hyperrings to the  category of (m, n)-rings. Finally, we study the relationship between fundamental functor and direct limit on Krasner (m, n)-hyperrings. In particular, we prove that the fundamental functor is exact and obtain some its basic properties.

Keywords

  1. Marty F. Sur une generalization de la notion de groupe, congress des Mathematiciens Scandinaves, Stockholm . 45-49 (1934).
  2. Corsini P., Leoreanu-Fotea V. Applications of hypersrtucture theory. Advances in Mathematics. Vol. 5: Kluwer Academic Publishers, (2003).
  3. Connes A., Consani C. The hyperring of adele classes. Number Theory. 131 (2): 159-194 (2011).
  4. Cristea I., Jancic-Rasovic S. Compositions hyperrings. An. Stiint. Univ. 261 \Ovidius" Constanta Ser. 21(2): 81-94 (2013).
  5. Dudek W.A., and Mirvakili S. Neutral elements, fundamental relations and -ary hypersemigroups. J. Algebra Comput. 19: 567-583 (2009).
  6. Krasner M. A class of hyperrings and hyperfields. J. Math. Math. Sci. 6 (2): 307-311 (1983).
  7. Shojaei H., Ameri R. Various kinds of quotient of a canonical hypergroup. & Nat Sci. 9 (1): 133-141 (2018).
  8. Soltani Z., Ameri R. An introduction to zero-divisor graphs of a commutative multiplicative hyperring. Sigma J. Eng. & Nat Sci. 9 (1): 101-106 (2018).
  9. Vougiouklis T. Hyperstructures and their representations. Mat. Pura e Appl. 2: 1-180 (1994).
  10. Ameri R., Norouzi M. Prime and primary hyperideals in Krasner (m, n)-hyperrings. J. Combin. 34: 379-390 (2013).
  11. Ameri R., Aivazi M., Hoskova-Mayerov S. Superring of Polynomials over a Hyperring. Math. 7 (902): 1-15 (2019).
  12. Davvaz B., Vougiouklis T. -ary  Iran. J. Sci. Technol. Trans. A Sci. 30 (A2): 165-174 (2006).
  13. Dehkordi S. O., Davvaz B. A strong regular on -semihyperrings. Sci. I. R. Iran. 22(3): 257-266 (2011).
  14. Mirvakili S., Davvaz Relations on Krasner (m, n)-hyperrings. Eur. J. Combi. 31: 790-802 (2010).
  15. Pelea C. Hyperrings and -relations: A general approach. Algebra. 383 104-128 (2013).
  16. Mirvakili S., Davvaz Constructions of (m, n)-hyperrings. Mat. Vesnik. 67 (1): 1-16 (2015).
  17. Jafarzadeh N., Ameri R.  On the relation between categories of (m, n)-aryhypermodules and (m, n)-ary modules. Sigma J. Eng. Nat. Sci. 9 (1): 85-99 (2018).
  18. Pelea On the direct limit of the direct system of multialgebras. Discrete Math. 306: 2916-2930 (2006).
  19. Hoskova S. Topological hypergroupoids. Math. Appl. 64: 2845-2849 (2012).
  20. Pelea C. A note on the direct limit of a direct system of multialgebras in a subcategory of multialgebras. Carpathian J. Math. 22(1-2): 121-128 (2006).
  21. Pre-semihyperadditive Categories. St. Univ. Ovidius Constanta. 27(1): 269-288 (2019).
  22.  

 

  • Leoreanu-Fotea V. The direct and the inverse limit of hyperstructures associated with fuzzy sets of type 2. J. Fuzzy Syst. 5(3): 89-94 (2008).
  1. Leoreanu V. Direct limit and inverse limit of join spaces associated with fuzzy sets. Pure Math. Appl. 113: 509-516 (2000).
  2. Awodey S. Category theory. Oxford University Press Inc. New York, Second Edition. 336 P. (2010).