Document Type: Original Paper


Department of Chemistry, Roudehen Branch, Islamic Azad University, Roudehen, Iran


The hybrid density functional theory (B3LYP) and ab initio molecular orbital (HF) based methods and Natural Bond Orbital (NBO) interpretation were used to analyze the conformational behaviors of 2,5,5-trimethyl-1,3,2-dioxaphosphinane 2-selenide (compound 1), 2,5,5-trimethyl-1,3,2-dithiaphosphinane 2-selenide (compound 2) and 2,5,5-trimethyl-1,3,2-diselena phosphinane 2-selenide (compound 3). The results explained that the axial conformations had a preference of compounds 1-3. The relative energies ∆E0 and Gibbs free energy difference values (ΔGeq-ax) between the ax and eq-conformations were calculated and showed the decrease from compound 1 to 3. Stereo electronic effect (SE) for 1 to 3 has been calculated by the NBO analysis. Therefore, in this study, other factors such as stereo electronic effects, electrostatic and steric interactions of compounds 1 to 3 conformational behavior have been evaluated. One examined whether the stereo electronic effect is the only factor affecting the conformational behavior or not? The electronic properties such as the HOMO and LUMO energies were also determined to investigate the reactive sites of the compounds. Structural-relative activities of compounds are also evaluated.


  1. Bouchareb F., Hessainia S., Berredje M., Benbouzid H., Djebbar H., and Aouf N.E. Efficient method for the synthesis of diazaphospholidines: toxicological evaluation. Am. J. Org. Chem., 2(1): 14-17 (2012).
  2. Wu J., Sun W., Xia G., and Sun Y. A facile and highly efficient route to α-amino phosphonates via three-component reactions catalyzed by Mg(ClO4)2 or molecular iodine. Org. Biomol. Chem., 4 (9): 1663-1666 (2006).
  3. Hiraga T., Williams P.J., Mundy G.R., and Yoneda T.The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Res., 61 (11): 4418-4424 (2001).
  4. Bubenik M., Rej R., Nguyen-Ba N., Attardo G., Oullet F., and Chan L. Novel nucleotide phosphonate analogues with potent antitumor activity. Bio .Med. Chem. Let.,12 (21): 3063-3066 (2002).
  5. Jankowski S., Marczak J., Olczak A., and Główka M.L. Stereochemistry of 1-hydroxyphosphonate–phosphate rearrangement. Retention of configu- ration at the phosphorus atom. Tetra. Let., 47 (20): 3341-3344 (2006).
  6.  Potrzebowski M.J., Bujacz G.D.,  Bujacz A., Olejniczak S.,  Napora P.,  Heliński J., Ciesielski W., and Gajda J.  Study of molecular dynamics and the solid state phase transition mechanism for unsymmetrical thiopyrophosphate using X-ray diffraction, DFT calculations and NMR spectroscopy. J. Phys. Chem. B, 110 (2): 761-771 (2006).
  7. Woźniak L. A., and Stec W. J. Oxidation in organophosphorus chemistry: Potassium peroxymonosulphate. Tetra. Let., 40 (13): 2637-2640, (1999).
  8.  Pir H., Günay N., Tamer Ö., Avcı D., and Atalay Y. Assignment of cis-trans Theoretical investigation of 5-(2-Acetoxyethyl)-6-methylpyrimidin-2,4-dione: Conformational study, NBO and NLO analysis, molecular structure and NMR spectra. Spect. Acta Part A: Mol. Bio. Spect., 112: 331-342 (2013).
  9. Nori-Shargh D., Yahyaei H., and Boggs J.E. Stereoelectronic interaction effects on the conformational properties of hydrogen peroxide and its analogues containing S and Se atoms: Ab initio, hybrid-DFT study and NBO analysis.  J. Mol. Graph. Mod., 28 (8): 807-813 (2010).
  10. Nori-Shargh D., and Boggs J.E.Complete basis set, hybrid‐DFT study and NBO interpretations of conformational behaviors of trans-2,3 and trans-2,5-dihalo-1,4-dithianes.   J. Phys. Org. Chem.24 (3): 212-221 (2011).
  11. Nori-Shargh D., Deyhimi F., Boggs J.E., Jameh-Bozorghi S., and Shakibazadeh R. DFT study and NBO analysis of the mutual interconversion of cumulene compounds.J. Phys. Org. Chem., 20 (5): 355- 364 (2007).
  12. Masnabadi N., Manesh A.T., and Azarakhshi F. Ab initio calculations of the conformational preferences of 1,3-Oxathiane S-Oxide and its analogs containing S and SE atoms-evidence for stereoelectronic interactions associated with the anomeric Effects. Phosphorus, Sulfur, Silicon Relat. Elem.,188 (8): 1053-1063 (2013).
  13. Azarakhshi F., khleghian M.,and Farhadyar N. DFT study and NBO analysis of conformational properties of 2-substituted 2-Oxo-1,3,2-dioxaphosphorinanes and their dithia and diselena analogs. Let. Org. Chem., 12 (7): 516-522 (2015).
  14. Azarakhshi F., Nori-Shargh D., Masnabadi N., Yahyaei H., and Mousavi S.N. Conformational behaviors of 2-substituted cyclohexanone oximes: An ab initio, hybrid DFT study, and NBO interpretation. Phosphorus, Sulfur, Silicon Relat. Elem., 187 (2): 276-293 (2012).
  15. Süveges B.D., and  Podlech J. Stereoelectronic effects in conformations of sulfide, sulfoxide, and sulfone α-carbanions. Tetra., 71 (48): 9061-9066 (2015).
  16. Alabugin I.V., and Zeidan T.A. Stereoelectronic effects and general trends in hyperconjugative acceptor ability of sigma bonds. J. Am. Chem. Soc.124 (12): 3175-3185 (2002).
  17. Pagliero R.J.,  Lusvarghi S.,  Pierini A.B.,  Brun R., and Mazzieri M.R. Synthesis, stereoelectronic characterization and antiparasitic activity of new 1-benzenesulfonyl-2-methyl-1,2,3,4-tetrahydroquinolines. Bioorg. Med. Chem., 18 (1): 142-150 (2010).
  18. Weinhold F., Landis C.R., and Glendening E.D. What is NBO analysis and how is it useful? Inter. Rev. Phys. Chem.,35 (3): 399-440 (2016).
  19. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H.P., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Laham A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P M.W., Johnson B., Chen W., Wong M.W., Gonzalez C. and Pople J. A. Gaussian 03, Revision B.03, Gaussian, Inc.: Pittsburgh PA, (2003).
  20. Glendening E.D., Badenhoop J.K., Reed A. E., Carpenter J.E., Bohmann J.A., Morales C.M. and Weinhold F. NBO Version 5.G., Theoretical chemistry institute, University of Wisconsin, Madison, WI, (2004). 
  21. Shagidullin R.R., Shakirov I.Kh.,  Musyakaeva R.Kh.,  Vandyukova I.I.,  and Nuretdinov I.A. Vibrational spectra and conformation of 2-methyl-2-seleno-1,3,2-dioxaphosphorinanes. Russ. Chem. Bull.,30 (5): 916-918 (1981).
  22. Winter A.H., and Falvey D.E. Vinyl Cations substituted with β π-donors have triplet ground states. J. Am. Chem. Soc.,132 (1): 215-222 (2010).
  23. Haines B.E., Sarpong R., and Musaev D.G. Generality and strength of transition metal β-effects. J. Am. Chem. Soc.,140 (33): 10612-10618 (2018).
  24. Sharma P.K., Petersen M., and Nielsen P. An α-d-configured bicyclic nucleoside restricted in an E-type conformation:  synthesis and parallel RNA Recognition. J. Org. Chem., 70 (13): 4918-4928 (2005). 
  25. Ayers P.W., and Parr R.G. Variational principles for describing chemical reactions: the fukui function and chemical hardness revisited. J. Am. Chem. Soc.,122 (9): 2010-2018 (2000).
  26. Padmanabhan J., Parthasarathi R., Subramaniaan V., and Chattaraj P.K. Electrophilicity-based charge transfer descriptor. J. Phys. Chem. A, 111 (7): 1358-1361 (2007).
  27. Sandford C., Fries L.R., Ball T.E., Minteer S.D., and Sigman M.S. Mechanistic studies into the oxidative addition of Co(I) complexes: combining electroanalytical techniques with parameterization. J. Am. Chem. Soc.,141 (47): 18877-18889 (2019).
  28. Parthasarathi J., Padmanabhan J., Sarkar U., Maiti B., Subramanian V., and Chattaraj P.K. Toxicity analysis of aenzidine through chemical reactivity and selectivity profiles: A DFT approach. Internet Electronic J. Mol. Des.,2 (12): 798-813 (2003).