Document Type : Original Paper
Author
Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute
Abstract
The plasma wave acceleration of electron in the bubble regime is investigated in a new configuration containing a planar wiggler. The space-charge field of the laser-created ion channel can focuse and stabilize the electron trajectory to guide it toward the acceleration region. The high-gradient plasma wave field can resonantly accelerate the trapped electron to higher energies in the presence of a planar wiggler compensating the electron dephasing. The results show that in the lower plasma wave amplitudes the planar wiggler plays a more significant role on the electron energy enhancement. The increment of the electron energy in this configuration isvalidated using a three-dimension single-particle code. The energy gain of electrondependency on the planar wiggler, ion channel field, plasma wave angle and amplitude as well as the initial energy of electron has been investigated. The results of paper will be of importance in the optimization of electron energy and improving the quality of the accelerated electrons in the plasma wakefield accelerators.
Keywords
- Mangles S. P., Murphy C. D., Najmudin Z., Thomas A. G., Collier J. L., Dangor A. E., Divall E. J., Foster P. S., Gallacher J. G., Hooker C.J. and Jaroszynski D.A. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431: 535-538 (2004).
- Geddes C.G.R., Toth C., Van Tilborg J., Esarey E., Schroeder C.B., Bruhwiler D., Nieter C., Cary J. and Leemans W.P. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431: 538-541 (2004).
- Zhang X., Khudik V.N. and Shvets G. Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime. Rev. Lett. 114: 184801 (2015).
- Gorbunov L. M. and Kirsanov V. I. Excitation of plasma waves by an electromagnetic wave packet. Phys. JETP. 66: 290–294 (1987).
- Sprangle P., Joyce G., Esarey E. and Ting A. Laser wakefield acceleration and relativistic optical guiding. Phys. Lett. 53: 2146–2148 (1988).
- Arefiev A.V., Khudik V.N. and Schollmeier M. Enhancement of laser-driven electron acceleration in an ion channel. Plasmas. 21: 033104 (2014).
- Tsung F.S., Narang R., Mori W.B., Joshi C., Fonseca R.A. and Silva L.O. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. Rev. Lett. 93: 185002 (2004).
- Lu W., Huang C., Zhou M., Tzoufras M., Tsung FS., Mori WB., Katsouleas T. A. nonlinear theory for multidimensional relativistic plasma wave wakefields. Plasmas. 13: 056709 (2006).
- Zhidkov A., Koga J., Kinoshita K. and Uesaka M. Effect of self-injection on ultraintense laser wake-field acceleration. Rev. E. 69: 035401 (2004).
- Mangles S.P., Walton B.R., Tzoufras M., Najmudin Z., Clarke R.J., Dangor A.E., Evans R.G., Fritzler S., Gopal A., Hernandez-Gomez C. and Mori W.B. Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Rev. Lett. 94: 245001 (2005).
- Ersfeld B., Bonifacio R., Chen S., Islam M.R., Smorenburg P.W. and Jaroszynski D.A. The ion channel free-electron laser with varying betatron amplitude. J. Phys. 16: 093025 (2014).
- Tajima T. and Dawson J. M. Laser electron accelerator. Rev. Lett. 43: 267 (1979).
- Everett M., Lal A., Gordon D., Clayton C.E., Marsh K.A. and Joshi C. Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368: 527 (1994).
- Gahn C., Tsakiris G.D., Pukhov A., Meyer-ter-Vehn J., Pretzler G., Thirolf P., Habs D. and Witte K.J. Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Rev. Lett. 83: 4772 (1999).
- Shvets G., Fisch N.J. and Pukhov A. Excitation of accelerating plasma waves by counter-propagating laser beams. Plasmas. 9: 2383-2392 (2002).
- Singh K.P., Gupta V.L., Bhasin L. and Tripathi V.K. Electron acceleration by a plasma wave in a sheared magnetic field. Plasmas. 10: 1493-1499 (2003).
- Singh K.P. and Tripathi V.K. Laser induced electron acceleration in a tapered magnetic wiggler. Plasmas. 11: 743-746 (2004).
- Faure J., Rechatin C., Norlin A., Lifschitz A., Glinec Y. and Malka V. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444: 737 (2006).
- Leemans W. and Esarey E. Laser-driven plasma-wave electron accelerators. Today. 62: 44-49 (2009).
- Arefiev A.V., Khudik V.N. and Schollmeier M. Enhancement of laser-driven electron acceleration in an ion channel. Plasmas. 21: 033104 (2014).
- Mehdian H., Kargarian A. and Hajisharifi K. Kinetic (particle-in-cell) simulation of nonlinear laser absorption in a finite-size plasma with a background inhomogeneous magnetic field. Plasmas. 22: 063102(2015).
- Gupta D.N., Kaur M., Gopal K. and Suk H. Space-charge field assisted electron acceleration by plasma wave in magnetic plasma channel. IEEE Trans. Plasma. Sci. 44: 2867-2873 (2016).
- Kaur M. and Gupta D.N. Electron acceleration by a radially polarized laser pulse in an ion channel. IEEE Trans. Plasma. Sci. 45: 2841-2847 (2017).
- Yadav M., Sharma S.C. and Gupta D.N. Electron Acceleration by a relativistic electron plasma wave in Inverse-Free-Electron laser mechanism. IEEE Trans. Plasma. Sci. 46: 2521-2527 (2018).
- Kargarian A., Hajisharifi K. and Mehdian H. Laser-driven electron acceleration in hydrogen pair-ion plasma containing electron impurities. Laser Part. Beams. 36: 203-209 (2018).
- Pellegrini C. and Zakowicz W. High-energy inverse free-electron-laser accelerator. Rev. A. 32: 2813–2823 (1985).
|
- Tsung F.S., Narang R., Mori W.B., Joshi C., Fonseca R.A. and Silva L.O. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel. Rev. Lett. 93: 185002 (2004).
- Kumar N., and Tripathi V. K. Effect of betatron resonance on plasma wave acceleration of electrons in an ion channel. Lett. 75: 260 (2006).
- Andreev N.E., Gorbunov L.M. and Kuznetsov S.V. Energy spectra of electrons in plasma accelerators. IEEE Trans. Plasma. Sci. 24: 448-452 (1996).
- Kalmykov S., Yi S. A., Khudik V. and Shvets G. Electron self-injection and trapping into an evolving plasma bubble. Rev. Lett. 103: 135004(2009).
- Kostyukov I., Nerush E., Pukhov A., and Seredov V. A multidimensional theory for electron trapping by a plasma wake generated in the bubble regime. J. Phys. 12: 045009 (2010).