Document Type : Original Paper
Authors
1 Department of Mathematic, Faculty of Mathematic Science and Statistics, University of Birjand, Birjand, Islamic Republic of Iran
2 School of Mathematics and Computer Science, Damghan University, Damghan, Islamic Republic of Iran
3 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Islamic Republic of Iran
Abstract
Let be a commutative (not necessary unital) inverse semigroup with the set of idempotents then is a commutative Banach -module with canonical actions. Recently, it is shown that the triangular Banach algebra
is -weakly -module amenable, provided that and is unital or satisfies condition for some . In this paper, we show that is -weakly -module amenable, without any additional conditions on and , if is a certain quotient space of .
Keywords
- Forrest BE, Marcoux LW. Derivation of triangular Banach algebras. Indiana Univ Math. Soc. 1996;45: 441-62.
- Forrest BE, Marcoux LW. Weak amenability of triangular Banach algebras. Tranc. Amer, Math. Soc. 2002;354(4): 1435-52.
- Amini M, Bagha DE. Weak module amenability for semigroup algebras. Semigroup forum. 2005;71: 18-26.
- Bodaghi A, Amini M, Jabbari A. Permanent weak module amenability of semigroup algebras. Ann. Alexandru. Ioan. Cuza. Univ. Math. 2015;63(2): 287-96.
- Nasrabadi E, Pourabbas AR. Module cohomology group of inverse semigroup algebras. Bull. Irannian Math. Soc. 2011;37(4): 157-69.
- Bodaghi A, Jabbari A. n-Weak module amenability of triangular Banach algebras. Math. Slovaca. 2015;65(3): 645-66.
- Pourabbas AR, Nasrabadi E. Weak module amenability of triangular Banach algebras, Math. Slovaca. 2011;61: 949-58.
- Nasrabadi E. Weak module amenability of triangular Banach algebras II. Math. Slovaca. 2018;69(2): 425-32.
- Amini M. Module amenability for semigroup algebras. Semigroup Forum. 2004;69: 243-54.