Document Type : Original Paper

Authors

Department of Geology, Faculty of Sciences, University of Shahid Bahonar, Kerman, Islamic Republic of Iran

Abstract

The Lar igneous suite (LIS), in southeastern Iran, is part of post collisional alkaline magmatism in Sistan suture zone. Shonkinite and kersantite are the only two high-Mg, K-rich olivine bearing rocks in the LIS. We study major and some compatible trace elements in the Lar shonkinite and kersantite (LSK) olivines to define mantle mineralogy and metasomatic processes. Olivines in shonkinite have higher Fo (83-90), compared with those in kersantite (Fo76-80). Ca and Ni contents in the olivines are relatively low, whereas their Mn and Ti contents are high and variable, respectively. Low Ni contents exhibit olivine crystallization at igneous conditions from a magma originated by partial melting of an olivine-rich mantle source. Geochemical date reveal that magma evolution is responsible for high-Mn and low Fo contents in kersantitic olivines. In contrast, high Mn, Mn/Fe and Fo contents in shonkinitic olivines indicate an existence of Mn-rich and Ca-Si-poor metasomatic agents in the source. So, considering the Middle Oligocene-Miocene post-collision nature of the Lar igneous suite, melts or fluids derived from upwelling asthenosphere in the form of magnesitic-carbonatite melts, had great potential in metasomatism of subcontinental lithospheric mantle. This CO2 and K-rich liquid then reacts with peridotite to produce new mineral assemblages including low-Ca clinopyroxene, olivine and phlogopite. Partial melting of such metasomatized source region was responsible for producing the undersaturated, K-rich shonkinite and kersantite in the LIS. 

Keywords

  1. Ammannati E, Jacob DE, Avanzinelli R, Foley SF, Conticelli S. Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle. Earth Planet. Sci. Lett. 2016; 444:64-74.
  2. Kushiro I. On the nature of silicate melt and its significance in magma genesis: regularities in the shift of liquidus boundaries involving olivine, pyroxene and silica minerals. Am. J. Sci. 1975; 275:411-431.
  3. Foley SF, Jacob DE, O’Neill SC. Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contrib. Mineral. Petrol. 2011; 162:1-20.
  4. Foley SF, Prelevic D, Rehfeldt T, Jacob DE. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet. Sci. Lett. 2013; 363:181-191.
  5. Ulmer P, Sweeney RJ. Generation and differentiation of Group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim. Cosmochim. Acta. 2002; 66:2139-2153.
  6. Upton BGJ, Skovgaard AC, McClurg J, Kirstein L, Cheadle M, Emeleus CH, Wadsworth WJ, Fallick AE. Picritic magmas and the Rum ultramafic complex, Scotland. Geol. Mag. 2002; 139:437-452.
  7. Green DH, Ringwood AE. The genesis of basaltic magmas. Contrib. Mineral. Petrol. 1967; 15:103-190.
  8. De Hoog JCM, Gall L, Cornell D. Trace element geochemistry of mantle olivine and applications to mantle petrogenesis and geo-thermo-barometry. Chem. Geol. 2010;270:196-215.
  9. Herzberg C. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J. Petrol. 2011;52:113-146.
  • Sobolev AV, Hofmann AW, Sobolev AV, Nikogosian IK. An olivine-free mantle source of Hawaiian shield basalts. Nature. 2005;434:590-597.
  • Sobolev AV, Hofmann AW, Kuzmin DH, Yaxley GM. The amount of recycled crust in sources of mantle-derived melts. Science. 2007;316:412-417.
  • Foley SF, Venturelli G, Green DH, Toscani L. The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth. Sci. Rev. 1987;24:81-134.
  • Chung SL, Wang KL, Crawford AJ, Kamenetsky VS, Chen CH, Lan CY, Chen CH. High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos. 2001; 59:153-170.
  • Muller D, Rock NMS, Groves DI. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineral. Petrol. 1992; 46:259-289.
  • Pang KN, Sun-Lin Chung SL, Zarrinkoub MH, Yu-Chin Lin YC, Hao-Yang Lee HY, Lo CH, Khatib MM. Iranian ultrapotassic volcanism at ~11 Ma signifies the initiation of post-collisional magmatism in the Arabia–Eurasia collision zone. Terra Nova. 2013; 25:405-413.
  • Sorkhabi R. Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions. Geol. Soc. Am. Spec. Pa. 2017;525.
  • Pang KN, Chung SL, Zarrinkoub MH, Khatib MM, Mohammadi SS, Chiu HY, Chu CH, Lee HY, Lo CL. Eocene–Oligocene post-collisional magmatism in the Lut Sistan region, eastern Iran: Magma genesis and tectonic implications. Lithos. 2013;180-181:234-251.
  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Meyer B, Wortel R. Zagros orogeny: a subduction-dominated process. Geol. Mag. 2011; 148:692-725.
  • Alavi M, Vaziri H, Seyed-Emami K, Lasemi Y. The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geol. Soc. Am. Bul. 1997; 109:1563-1575.
  • McCall GJH. The geotectonic history of the Makran and adjacent areas of southern Iran. J. SE Asian Earth Sci. 1997; 15:517-531.
  • Tirrul R, Bell IR, Griffis RJ, Camp VE. The Sistan suture zone of eastern Iran. Geol. Soc. Am. Bull. 1983; 94:134-150.
  • Richards JP. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geol. Rev. 2015;323-345.
  • Ghafaribijar S. Geochemistry of Potassic Mafic Rocks in the Lar Complex, North of Zahedan, East of Iran. M.Sc. Thesis, Sistan and Baluchestan Univ. 2010.
  • Mohammadi A, Burg JP, Bouilhol P,Ruh J. U–Pb geochronology and geochemistry of Zahedan and Shah Kuh plutons, southeast Iran: Implication for closure of the South Sistan suture zone. Lithos. 2016;248-251:293-308.
  • Gittins J, Fawcett JJ, Brooks CK, Rucklidge JC. Intergrowths of nepheline-K-feldspar and kalsilite-K-feldspar: A reexamination of the pseudo-leucite problem. Contrib. Mineral. Petrol. 1980; 73:119-126.
  • Mitchell RH, Bergman SC. Petrology of lamproites. Plenum Press, New York, London. 1991;447.
  • Esperanca S, Holloway JR. The origin of high-K latites from Camp Creek, Arizona: constraints from experiments with variable fO2 and H2 Contrib. Mineral. Petrol. 1986; 93:504-512.
  • Righter K, Carmichael ISE. Phase equilibria of phlogopite lamprophyres from western Mexico: biotite liquid equilibria and P–T estimates for biotite-bearing igneous rocks. Contrib. Mineral. Petrol. 1996; 123:1-21.
  • Kamenetsky VS, Elburg MA, Arculus R, Thomas R. Magmatic origin of low-Ca olivine in subduction-related magmas: co-existence of contrasting magmas. Chem. Geol. 2006; 233:346-357.
  • Ionov DA, Doucet LS, Ashchepkov IV. Composition of the lithospheric mantle in the Siberian craton: New constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 2010; 51:2177-2210.
  • Gavrilenko M, Herzberg C, Vidito C, Carr MJ, Travis Tenner T, Ozerov A. A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. J. Petrol. 2016; 9:1811-1832.
  •  

 

  • Spandler C, O’Neill HSC. Diffusion and partition coefficients of minor and trace elementsinSanCarlosolivineat1300 1C with some geochemical implications. Contrib. Mineral. Petrol. 2010; 159:791-818.
  • Bussweiler Y, Foley SF, Prelević D, Jacob DE. The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos. 2015; 223:220-252.
  • Prelevic D, Foley SF. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth Planet. Sci. Lett. 2007; 256:120-135.
  • Sobolev NV, Logvinova AM, Zedgenizov DA, Pokhilenko NP, Malygina EV, Kuzmin DV, Sobolev AV. Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia. Lithos. 2009; 112:701-713.
  • Foley SF, Musselwhite DS, van der Laan SR. Melt compositions from ultramafic vein assemblages in the lithospheric mantle: a comparison of cratonic and non-cratonic settings. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH, (eds) Proceedings of the 7th International Kimberlite Conference. Cape Town: Red Roof Design. 1999;238-246.
  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J. Petrol. 2006; 47:1261-1315.
  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim. Cosmochim. Acta. 2008; 72:3258-3286.
  • Jaques AL, Green DH. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol. 1980; 73:287-310.
  • Rudnick RL, McDonough WF, Chappell BW. Carbonatite metasomatism in the northern Tanzanian mantle petrographic and geochemical characteristics. Earth Planet. Sci. Lett. 1993;114; 463-475.
  • Brett RC, Russell JK, Moss S. Origin of olivine in kimberlite: phenocryst or impostor? Lithos. 2009; 112:201-212.
  • Neumann ER, Wulff-Pedersen E, Simonsen SL, Pearson NJ, Marti J, Mitjavila J. Evidence for fractional crystallization of periodically refilled magma chambers in Tenerife, Canary Islands. J. Petrol. 1999; 40:1089-1123.
  • Prelevic D, Foley SF, Romer RL, Conticelli S. Mediterranean Tertiary lamproites: multicomponent melts in postcollisional dynamics. Geochim. Cosmochim. Acta. 2008;72: 2125-2156.
  • Sobolev NV, Logvinova AM, Zedgenizov DA, Pokhilenko NP, Kuzmin DV, Sobolev AV. Olivine inclusions in Siberian diamonds: high-precision approach to minor elements. Eur. J. Mineral. 2008; 20:305-315.
  • Whitney DL, Evans BW. Abbreviations for Names of Rock-Forming Minerals. Mineral. 2010;95(1):185-187.