Document Type : Original Paper

Author

Department of Physics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran

Abstract

In this paper, we study the entanglement and quantum teleportation of a two-qutrit state evolved under one-axis counter-twisting Hamiltonian with the intrinsic decoherence effects. The entanglement and fidelity are analyzed as a function of decoherence rate, Hamiltonian coefficient, and magnetic field. It has been seen that the system is constantly entangled. Both the decoherence rate and the Hamiltonian coefficient have a negative correlation with the entanglement and fidelity. The faithfulness and negativity are efficiently optimized by the magnetic fields. We deduced that we can acquire some best fidelity for the system when it is maximally entangled.

Keywords

Main Subjects

  1. Nielsen M. A and Chuang I. L. Quantum computation and quantum information. Cambridge university Press 2000.
  2. Bouwmeester D, Mattle K, Pan J.W, Weinfurter H, Zeilinger A and Zukowski M. Experimental quantum teleportation of arbitrary quantum states. Appl Phys B. 1998;67:749.
  3. Bennett C. H and Wiesner S. J. Communication via one and two particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett. 1992;69:2881.
  4. Mattle K, Weinfurter H, Kwiat P. G and Zeilinger A. Dense Coding in Experimental Quantum Communication. Phys Rev Lett. 1996;76:4546.
  5. Schumacher B. Quantum coding. Phys Rev A. 1995;51:2738.
  6. Bennett C. H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W. K. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky- Rosen channels. Phys Rev Lett. 1993;70:1895.
  7. Kitagawa M and Ueda M. Squeezed spin states. Phys Rev A. 1993;47(6):5138-5143.
  8. Naji A and Jafarpour M. Squeezing and entanglement in multi-qutrit systems. Quant Info Process. 2013;12:2917-2933.
  9. Naji A. Shadman N. Generation of entanglement in multi-qutrit systems by nonlinear Hamiltonian. J Sci Islam Repub Iran. 2022;32(4).
  10. Duan LM, Cirac J. I and Zoller P. Quantum entanglement in spinor Bose-Einstein condensates. Phys Rev A. 2002;65:033619.
  11. Sorensen A and Molmer K. Spin-spin interaction and spin squeezing in an optical lattice. Phys Rev Lett. 1999;83:2274.
  12. Xi XY, Cheng WW, Huang YX. Entanglement and quantum teleportation in a three-qubit Heisenberg chain with three-site interactions. Quantum Inf Process. 2015;14(7):2551-2562.
  13. Zheng L and Zhang G. Intrinsic decoherence in Jaynes-Cummings model with Heisenberg exchange interaction. Eur Phys J. D 2017;71:288.
  14. Naderi N, Bordbar M, Hasanvand F. K and Chamgordani A. M. Intrinsic of inhomogeneous magnetic field on the qutrit teleportation via XXZ Heisenberg chain under intrinsic decoherence. Int J Light Electron Opt. 2021;247:167948.
  15. Song W. Effect of intrinsic decoherence on entanglement of a two-qutrit 1D optical lattice chain with nonlinear coupling. Chinese Physics B. 2009;18(8):3251-3257.
  16. Joos E, Zeh H. D, Kiefer C, Giulini D, Kupsch J and Stamatescu I. O. Decoherence and the Appearance of a Classical World in Quantum Theory. Springer Press, 2nd edition 2003.
  17. Milburn GJ. Intrinsic decoherence in quantum mechanics. Phys Rev A. 1991;44:5401-5406.
  18. Caves C. M and Milburn G. J. Quantum-mechanical model for continuous position measurements. Phys Rev D. 1987;36:5543.
  19. Milburn GJ. Kicked quantized cavity mode: An open systems theory approach. Phys Rev A. 1987;36:744.
  20. Jiang C, Wei YZ, Jiang M. Teleportation of an arbitrary two-qubit state via four-qubit cluster state in noisy environment. Int J Theor Phys. 2022;61:154.

 

  1. Qin M and Ren Z. Z. Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshincki-Moriya interaction. Quantum Info Process. 2015;14:2055-2066.
  2. Bin S, Tian-Hai Z, Jian Z. Influence of intrinsic decoherence on entanglement in two-qubit quantum Heisenberg XYZ chain. Commun. Theor Phys (Beijing China). 2005;44:255-258.
  3. Mohammadi H, Akhtarshenas SJ, Kheirandish F. Influence of dephasing on the entanglement teleportation via a two- qubit Heisenberg XYZ system. Eur Phys J D. 2011;62:439-447.
  4. Guo J. L, Xia Y and Song H. S. Effects of Dzyaloshinski–Moriya anisoyropic antisymmetric interaction on entanglement and teleportation in a two-qubit Heisenberg chain with intrinsic decoherence. Opt Commun. 2008;281:2326.
  5. Zheng L and Feng Zhang G. Intrinsic decoherence in Jaynes-Cummings model with Heisenberg exchange interaction. Eur Phys J D. 2017;71:288.
  6. Vidal G and Werner R. F. Computable measure of entanglement. Phy Rev A. 2002;65:032314.
  7. Carteret H. A. Noiseless quantum circuits for the Peres separability criterion. Phys Rev Lett. 2005;94:040502.
  8. Bowen G and Bose S. Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys Rev Lett. 2001;87:267901.
  9. Jozsa R. Fidelity for mixed quantum states. J Mod Opt. 1994;41:2315.
  10. Bowdrey MD, Oi DKL, Short AJ, Banaszek K, Jones JA. Fidelity of single qubit maps. Phys Lett A. 2002;294:258.