Document Type : Original Paper

Authors

1 1 Department of Statistics‎, ‎Tarbiat Modares University‎, ‎Tehran‎, ‎Islamic Republic of Iran

2 2 Department of Statistical Sciences‎, ‎Padua University‎, ‎Italy

Abstract

Many survival data analyses aim to assess the effect of different risk factors on survival time. In some studies, the survival times are correlated, and the dependence between survival times is related to their spatial locations. Identifying and considering the dependence structure of data is essential in survival modeling. The copula functions are helpful tools for incorporating data dependencies. So, one may use these functions for modelling spatial survival data. This paper presents a model for spatial survival data by the Gumbel-Hougaard copula function. A two-stage estimator using a composite likelihood function is used to estimate regression and dependence parameters. A simulation study investigates the performance of the model. Finally, the proposed model is applied to model a set of COVID-19 data.

Keywords

Main Subjects

  1. Vaupel J‎‎W‎, ‎Manton KG‎ ‎and Stallard E. ‎The Impact of Heterogeneity in Individual Frailty on the Dynamics of Mortality. Demography. ‎1979‎; 16: ‎439-454‎.
  2. Li Y‎ ‎and Ryan L‎. ‎Modeling Spatial Survival Data Using Semiparametric Frailty Models‎. Biometrics. 2002; 58: ‎287-297‎.
  3. Motarjem K, ‎Mohammadzadeh M‎ ‎and Abyar A‎. Bayesian Analysis of Spatial Survival Model with Non-Gaussian Random Effect. Journal of Mathematical Sciences. 2019; 237: ‎692-701‎.
  4. Henderson R‎, ‎Shimakura S, ‎Gorst D‎. ‎Modeling Spatial Variation in Leukemia Survival Data‎. Journal of the American Statistical Association. ‎2002; 97: ‎965-972‎.
  5. Banerjee S‎ and ‎Dey D‎‎K. ‎Semiparametric Proportional Odds Models for Spatially Correlated Survival Data. Lifetime Data Analysis. 2005; 11: 175-191‎.
  6. Zhao L‎, ‎Hanson T‎E‎. ‎and Carlin B‎P. ‎Mixtures of Polya Trees for Flexible Spatial Frailty Survival Modelling‎. Biometrika. 2009; 96: 263-276‎.
  7. Pan C‎, ‎Cai B‎, ‎Wang L‎ ‎and Lin X‎. ‎Bayesian Semi Parametric Model for Spatial Interval-Censored Survival Data‎. Computational Statistics and Data Analysis. ‎2014; 74: 198-209‎.
  8. ‎Liu D, ‎Kalbfleisch JD‎, ‎Schaubel DE. ‎A Positive Stable Frailty Model For Clustered Failure Time Data With Covariate-Dependent Frailty. Biometrics. 2014; 67(1)‎: 8-17‎.
  9. Sklar A. ‎Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l'Institut de Statistique de l'Universite‎́ ‎de Paris. 1959; 8: 229-231‎.
  10. Nelsen RB. An Introduction to Copulas. 2005; ‎Second Edition‎. ‎Springer Series in Statistics‎ .
  11. Clayton D‎. ‎A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence‎. Biometrika. 1978; 65: 141-151‎.
  12. Bárdossy A‎. Copula-based Geostatistical Models for Groundwater Quality Parameters‎. Water Resources Research. 2006; 42: 1-12‎.
  13. Shiau J‎T. Fitting Drought Duration and Severity with Two-Dimensional Copulas. Water Resources Research. 2006; 20: 795-815‎.
  14. Omidi‎ ‎M, ‎Mohammadzadeh‎ ‎M ‎and Morid‎ ‎S‎. The Probabilistic Analysis of Drought Severity-Duration in Tehran Province using Copula Functions‎. Iranian Journal of Agricultural Sciences. 2010; 41: 95-102‎.
  15. Li Y‎ and ‎Lin X. Semiparametric Normal Transformation Models for Spatially Correlated Survival Data. Journal of the American Statistical Association. 2006; 101: 591-603‎.
  16. Domma F‎ ‎and Giordano S. A Copula-Based Approach to Account for Dependence in Stress-Strength Models. Statistical Papers. 2013; 54: 807-826‎.
  17. Paik J‎, ‎Ying Z‎. ‎A Composite Likelihood Approach for Spatially Correlated Survival Data. Computational Statistics and Data Analysis. 2013; 56(1)‎: 209-216‎.
  18. Zhou H, ‎Hanson T and ‎Knapp R. Marginal Bayesian Nonparametric Model for Time to Disease Arrival of Threatened Amphibian Populations. Biometrics. 2015; 71: 1101-1110‎.
  19. Prenen L and ‎Braekers R‎. ‎Extending the Archimedean Copula Methodology to Model Multivariate Survival Data Grouped in Clusters of Variable Size‎. Journal of the Royal Statistical Society‎: ‎Series B (Statistical Methodology). 2017; 79: 483-505‎.
  20. Geerdens‎ ‎C, ‎Acar‎ ‎EF‎ ‎and Janssen‎ ‎P‎. ‎Conditional Copula Models For Right-Censored Clustered Event Time Data. Biostatistics. 2018;19(2): ‎247-262‎.
  21. Omidi, M and Mohammadzadeh, M. A New Method to Build Spatio-Temporal Covariance Functions: Analysis of Ozone Data. Statistical Papers. 2015; 57(3): 689–703

 

  1. Lee‎ ‎E‎W‎, ‎Wei‎ ‎L‎J‎ ‎and Amato‎ ‎D‎A‎. Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations. Survival Analysis‎: ‎State ‎of the Art‎. ‎J. ‎P‎. ‎Klein and P‎. ‎Goel‎, ‎eds‎. ‎Boston‎: ‎Kluwer Academic Publishers‎. 1992; ‎237–248‎.
  2. Varin C, ‎Reid N ‎and Firth D‎. ‎An Overview of Composite Likelihood Methods. Statistica Sinica. 2011; 21(1): ‎5-42‎.
  3. Motarjem K‎, ‎Mohammadzadeh M‎ ‎and Abyar A‎. ‎Geostatistical Survival Model with Gaussian Random Effect‎. Statistical Papers. 2020; 21(1)‎:85-107‎.
  4. Xu B‎, ‎Gutierrez B‎, ‎Mekaru S‎, ‎Sewalk K‎, ‎Goodwin L‎, ‎Loskill A‎, ‎Cohn E L‎, ‎Hswen Y‎, ‎Hill S C‎, ‎Cobo M M‎, ‎Zarebski A E‎, ‎Li S‎, ‎Wu C‎, ‎Hulland E‎, ‎Morgan J D‎, ‎Wang L‎, ‎O’Brien K‎, ‎Scarpino S V‎, ‎Brownstein J S‎, ‎Pybus O G‎, ‎Pigott D M‎ and ‎Kraemer M U G‎. ‎Epidemiological Data From the COVID-19 Outbreak‎, ‎Real-Time Case Information. Scientific Data. 2020; 7 (1): 106‎.
  5. Zhang Z‎. Parametric Regression Model for Survival Data‎: ‎Weibull Regression Model as an Example. Annals of translational medicine. 2016; 4 (24)‎: 484‎.